# Scanpy

### Tertiary analysis of large-scale scRNA-seq data

Alex Wolf, Institute of Computational Biology, Helmholtz Munich March 13, 2017 - Video talk for HCA Red Box Meeting

Wolf, Angerer & Theis, Genome Biology (2018)

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt



## Scanpy

Scalable Python-based alternative to established R packages for writing clean, comprehensive analysis pipelines.



## Scanpy vs. Seurat

Satija et al., Nat. Biotechn. (2015)

Benchmarked against Seurat, 2.7K cells.

- preprocessing: <1 s vs. 14 s
- regressing out unwanted sources of variation: 6 s vs. 129 s
- PCA: <1 s vs. 45 s
- clustering: 1.3 s vs. 65 s
- tSNE: 6 s vs. 96 s
- marker genes (approximation):
  0.8 s vs. 96 s

| I theislab / scanpy_usage                  |                                | Orumwatch = 2 ★ Star 3 ¥Fork 1                 |
|--------------------------------------------|--------------------------------|------------------------------------------------|
| ⇔ Code ① Issues ② □ Pull req               | uests 0 📃 Projects 0 🗐 Wiki    | ht Insights O Settings                         |
| Branch: master + Scanpy_usage / 170        | 505_seurat /                   | Create new file Upload files Find file History |
| R falexwolf added regressing out to readme |                                | Latest commit c9cb49a 10 seconds ago           |
|                                            |                                |                                                |
| in figures                                 | updated for version 0.2.9.1    | 38 minutes ago                                 |
| README.md                                  | added regressing out to readme | 10 seconds ago                                 |
| seurat.ipynb                               | updated for version 0.2.9.1    | 38 minutes ago                                 |
| E seurat_RJpynb                            | updated for version 0.2.9.1    | 38 minutes ago                                 |
|                                            |                                |                                                |

I README.md

First compiled: May 5, 2017. See the notebook.

### Scanpy versus Seurat

Scanpy provides a number of Seurat's features (Satija *et al.*, Nat. Biotechnol., 2015), but at significantly higher computationally efficiency. Here, we reproduce most of Seurat's guided clustering tutorial as compiled on March 30, 2017. The tutorial starts with preprocessing and ends with the identification of cell types through marker genes of clusters. The data consists in *3k PBMCs from a Healthy Donor* and is freely available from 10x (here from this webpage). The profiling information for Seurat has been obtained within seurat\_R.ipynb.

|                            | Scanpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seurat |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| preprocessing              | <1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 s   |
| highly variable genes      | other genes<br>other genes<br>other genes<br>other genes<br>other genes<br>other genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| correction, regressing out | 6 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129 s  |
| PCA                        | <1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 s   |
|                            | C617<br>2<br>1<br>0<br>4<br>1<br>2<br>1<br>0<br>4<br>1<br>2<br>2<br>1<br>0<br>4<br>1<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| clustering                 | 1.3 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 s   |
| tSNE                       | 6.5 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 s   |
|                            | Doverning groups<br>Toget and gr |        |
| finding marker genes       | 0.8 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96 s   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |

## Scanpy vs. Cell Ranger

Zheng et al., Nat. Commun. (2017)

Benchmarked against Cell Ranger R kit, 68K cells.

- preprocessing: 14 s vs. 300 s
- PCA: 17 s vs. 120 s
- tSNE: 5 min vs. 26







## Scanpy scales to >1M cells

1.3M Neurons of 10x Genomics



tSNE1

louvain groups

## AnnData - Annotated Data

- backed and memory mode
- views on data
- interface to .*loom* files, 10x
   Genomics HDF5 files
- categorical data on HDF5 level
- sparse data on HDF5 level (anndata.h5py, h5sparse)
- arbitrary unstructured annotations
- integration with pandas and conventions of Python ecosystem



### github.com/theislab/anndata

### anndata.AnnData

class anndata.AnnData(X=None, obs=None, var=None, uns=None, obsm=None, varm=None, raw=None, dtype='float32', single\_col=False, filename=None, filemode=None, asview=False, oidx=None, vidx=None) %

### github.com/theislab/anndata

### Attributes

| X         | Data matrix of shape n_obs × n_vars (np.ndarray, sp.sparse.spmatrix).   |
|-----------|-------------------------------------------------------------------------|
| filename  | Change to backing mode by setting the filename of a . <i>h5ad</i> file. |
| isbacked  | True if object is backed on disk, False otherwise.                      |
| isview    | True if object is view of another AnnData object, False otherwise.      |
| n_obs     | Number of observations.                                                 |
| n_vars    | Number of variables/features.                                           |
| shape     | Shape of data matrix: (n_obs, n_vars).                                  |
| obs       | One-dimensional annotation of observations (pd.DataFrame).              |
| obsm      | Multi-dimensional annotation of observations (mutable structured        |
| obs_names | Names of observations (alias for .obs.index).                           |
| raw       | Store raw version of .X and .var as .raw.X and .raw.X.                  |
| var       | One-dimensional annotation of variables/ features (pd.DataFrame)        |
| varm      | Multi-dimensional annotation of variables/ features (mutable stru       |
| var_names | Names of variables (alias for .var.index).                              |

### Methods

concatenate (adatas[,...])

copy ([filename])

transpose ()

obs\_names\_make\_unique ([jOin])

var\_names\_make\_unique ([join])

write ([filename, compression, compression\_opts])

write\_csvs (dirname[, ...])

write\_loom (filename)

## Graph representation Islam et al., Genome Research (2011)

- High-dimensional data → make guess for distance metric d(x, y) → evaluate d locally → generate neighborhood graph of single cells
- Typically, obtain *d* from preprocessing and something like euclidean distance.
- Alternatively, *learn* the distance *d*:





### Learned distances resolve batch effects

Scanpy 1.0 "Universal preprocessing". No manual alignment necessary.



## Neighbors Scanpy 1.0

Class for representing data as a graph of neighborhood relations between data points.

Simplest case: knn graph.

- much faster than *sklearn.neighbors*
- much faster than C, annoy, nmslib for < 100k cells</li>

Also, *Neighbors* offers functions related to stochastic processes on graphs, absent in *igraph*, *networks*, *graph-tools*.

Scanpy 1.0 use umap implementation. Easily installed and very fast.



(22000, 1500)

Matrix size

(30000, 2000)

10

0

(12000, 1000)

### scanpy.api.Neighbors Scanpy 1.0

class scanpy.api.Neighbors(adata, n\_jobs=None)

Data represented as graph of nearest neighbors.

Represent a data matrix as a graph of nearest neighbor relations (edges) among data points (nodes).

### Attributes

| distances    | Distances between data points.                                            |
|--------------|---------------------------------------------------------------------------|
| similarities | Similarities between data points, closely related to a transition matrix. |
| eigen_values | Eigen values of similarity matrix.                                        |
| eigen_basis  | Eigen basis of similarity matrix.                                         |
| laplacian    | Graph laplacian.                                                          |

### Methods

| <pre>compute_distances ([n_neighbors, knn, n_pcs])</pre> | Compute distances.                             |
|----------------------------------------------------------|------------------------------------------------|
| <pre>compute_similarities ([alpha])</pre>                | Compute similarities.                          |
| <pre>compute_eigen ([n_comps, sym, sort, matrix])</pre>  | Compute eigen decomposition of similarity matr |
| compute_laplacian ()                                     | Graph Laplacian for K.                         |
| to_igraph ()                                             | Generate igraph object.                        |

## Many Scanpy tools use Neighbors

A single representation of the data for all common analysis tasks.

clustering

Levine et al., Cell (2015), Xu et al. Bioinf (2015) ...

• pseudotime inference

Trapnell et al., Bendall et al. (2014), Haghverdi et al. (2016), ...

• graph drawing

Islam et al., Genome Research (2011), ...

manifold learning (tSNE, diffmap, ...)
 Amir et al., Nat Biotechn (2013) ...



## A graph-based coordinate system

Graph Abstraction maps both connected and disconnected structure.





Manifold learning, graph drawing [& topological data analysis]:

- usually violate topological structure
- for large data, provide too much detail, results far from "canonical"
- graph drawing does not scale

# Map of whole organism Wolf et al., unpublished (Wolf et al., bioRxiv (2017)

Plass *et al.*, unpublished (2017)





fine resolution



Graph abstraction:

- faithful to topological structure
- provides the wished level of detail
- extremely fast, scales arbitrarily



## Map of whole organism Plass *et al.*, unpublished (2017) Wolf *et al.*, bioRxiv (2017)



Graph abstraction:

- enables topologically faithful visualisation at single-cell level
- reveals putative lineages, which can be oriented, e.g., with velocyto
- continuous coordinates, extending DPT



velocyto



### La Manno et al., bioRxiv (2017)

epidermal lineage



Haghverdi *et al.*, Nat Meth (2016)

## 1.3M neurons 10x Genomics



Graph drawing not feasible. Abstracted graph representation takes around 1 h; tSNE around 4 h.

## Scanpy's API

### Modular API.

- sc.preprocessing
- sc.tools
- sc.plotting
- sc.datasets
- sc.settings
- sc.logging

Docs > Features/API

### Features/API

Scanpy's high-level API provides an overview of all features relevant to pratical use:

import scanpy.api as sc

### Preprocessing tools

Filtering of highly-variable genes, batch-effect correction, per-cell (UMI) normalization, preprocessing recipes.

### **Basic Preprocessing**

| pp.filter_cells (data[, min_counts,])                   | Filter cell outliers based on counts and numbers of gene  |
|---------------------------------------------------------|-----------------------------------------------------------|
| <pre>pp.filter_genes (data[, min_cells,])</pre>         | Filter genes based on minimal number of cells or counts.  |
| <pre>pp.filter_genes_dispersion (data[, flavor,])</pre> | Filter genes based on dispersion: extract highly variable |
| pp.leg1p (data[,copy])                                  | Logarithmize the data matrix.                             |
| pp_pca (data[, n_comps, zero_center,])                  | Principal component analysis [Pedregosa11].               |
| <pre>pp.mormalize_per_cell (data[,])</pre>              | Normalize each cell.                                      |
| pp.regress_eat (adata, keys[, n_jobs, copy])            | Regress out unwanted sources of variation.                |
| pp.scale (data[, zero_center, max_value, copy])         | Scale data to unit variance and zero mean.                |
| pp.subsample (data, fraction[, seed,])                  | Subsample to a fraction of the number of samples.         |

### Recipes

| pp.recipe_zheng17 (adata[, n_top_genes,])      | Normalization and filtering as of [Zheng17].   |
|------------------------------------------------|------------------------------------------------|
| pp.recipe_weinreb16 (adata[, mean_threshold,]) | Normalization and filtering as of [Weinreb17]. |

### Machine Learning and Statistics tools

### Visualization

| t1.pca (data[, n_comps, zero_center,])      | Principal component analysis [Pedregosa11].         |
|---------------------------------------------|-----------------------------------------------------|
| t1.tsme (adata[, n_pcs, perplexity,])       | t-SNE [Maaten08] [Amir13] [Pedregosa11].            |
| t1.diffmap (adata[, n_comps, n_neighbors,]) | Diffusion Maps [Colfman05] [Haghverdi15] [Wolf17].  |
| tl.draw_graph (adata[, layout, root,])      | Force-directed graph drawing [Fruchterman91] [Weinn |

### Branching trajectories and pseudotime, clustering, differential expression

| 11.aga (adata[, n_neighbors, n_pcs, n_dcs,])              | Generate cellular maps of differentiation manifolds with |
|-----------------------------------------------------------|----------------------------------------------------------|
| <pre>tl.leuvaim (adata[, n_neighbors, resolution,])</pre> | Cluster cells into subgroups [Blondel08] [Levine15] [Tr  |
| <code>tl.dpt</code> (adata[, n_branchings, n_neighbors,]) | Infer progression of cells, identify branching subgroups |
| tl.rank_genes_groups (adata, groupby[,])                  | Rank genes according to differential expression [Wolf]   |

### Simulations

t1.stm (model[, tmax, branching, ...]) Simulate dynamic gene expression data [Wittmann09] [Wolf17].

### Generic methods

### **Reading and Writing**

 read (filename\_or\_filekey[, sheet, ext, \_])
 Read file and return AnnData object.

 write (filename\_or\_filekey, data[, ext])
 Write AnnData objects and dictionaries to file.

 read\_lBk\_ins (filename, genome)
 Get annotated 10X expression matrix from hdf5 file.

### Data Structures

O Edit on GitHub

| AnnBata (data[, smp, var, add, dtype, single_col]) | Store an annotated data matrix.                 |
|----------------------------------------------------|-------------------------------------------------|
| BataGraph (adata[, k, knn, n_jobs, n_pcs,])        | Data represented as graph of nearest neighbors. |

### Plotting

### Generic plotting with AnnData

| pl.scatter (adata[, x, y, color, alpha,])               | Scatter plot.  |
|---------------------------------------------------------|----------------|
| <pre>pl.wielin (adata, keys[, group_by, jitter,])</pre> | Violin plot.   |
| pl.ranking (adata, attr, keys[, labels,])               | Plot rankings. |

### Plotting tool results

Methods that extract and visualize tool-specific annotation in an AnnData object.

### Visualization

| pl.pca (adata, **params)                                    | Plot PCA results.                             |
|-------------------------------------------------------------|-----------------------------------------------|
| pl.pca_loadings (adata[, components, show, save])           | Rank genes according to contributions to PCs. |
| <pre>pl.pca_scatter {adata[, color, alpha,]}</pre>          | Scatter plot in PCA coordinates.              |
| <pre>pl.pca_variance_ratie (adata[, log, show, save])</pre> | Plot the variance ratio.                      |
| pl.tsme (adata[, color, alpha, groups,])                    | Scatter plot in tSNE basis.                   |
| pl.diffmap (adata[, color, alpha, groups,])                 | Scatter plot in Diffusion Map basis.          |
| pl.draw_graph (adata[, layout, color, alpha,])              | Scatter plot in graph-drawing basis.          |

### Branching trajectories and pseudotime, clustering, differential expression

| pl.aga (adata[, basis, color, alpha, groups,]) | Summary figure for approximate graph abstraction.     |
|------------------------------------------------|-------------------------------------------------------|
| pl.aga_graph (adata[, solid_edges,])           | Plot the abstracted graph.                            |
| pl.aga_path (adata[, nodes, keys,])            | Gene expression changes along paths in the abstracted |
| pl.leuvain (adata[, basis, color, alpha,])     | Plot results of Louvain clustering.                   |
| pl.dpt (adata[, basis, color, alpha, groups,]) | Plot results of DPT analysis.                         |
| pl.dpt_scatter (adata[, basis, color, alpha,]) | Scatter plot of DPT results.                          |
| pl.dpt_groups_pseudotime (adata[, color_map,]) | Plot groups and pseudotime.                           |
| pl.dpt_timeseries (adata[, color_map, show,])  | Heatmap of pseudotime series.                         |
| pl.rank_genes_groups (adata[, groups,])        | Plot ranking of genes.                                |
| pl.rank genes_groups_violin (adata[, groups,]) | Plot ranking of genes for all tested comparisons.     |

### Simulations

pl.sim (adata[, tmax\_realization, ...]) Plot results of simulation.

### **Builtin datasets**

Simple functions that provide annotated datasets for benchmarking. See here for extensive documented tutorials and use cases.

All of these functions return an Annotated Data object.

| datasets.paul15 ()                         | Get logarithmized data for development of Myeloid Progeni |
|--------------------------------------------|-----------------------------------------------------------|
| datasets.toggleswitch ()                   | Simple toggleswitch from simulated data.                  |
| datasets.krumsiek11 ()                     | Simulated myeloid progenitor data.                        |
| datasets_blobs ([n_centers, cluster_std,]) | Make Gaussian Blobs.                                      |

### Scanpy's use cases

### Docs » Examples

### O Edit on GitHub

### Examples

Good starting points are the following examples, which build on established results from the literature. All examples are versioned on GitHub.

### Example 1: Seurat's [Satija15] guided clustering tutorial.



Example 2: The Diffusion Pseudotime (DPT) analyses of [Haghverdi16] for data of [Paul15] and [Moignard 15]. Note that DPT has recently been very favorably discussed by the authors of Monocle.



### Example 3: Analyzing 68 000 cells from [Zheng17], we find that Scanpy is about a factor 5 to 16 faster and more memory efficient than the Cell Ranger R kit for secondary analysis.



### Example 4: Visualizing 1.3 mio brain cells.



Example 5: Simulating single cells using literature-curated gene regulatory networks [Wittmann09]; here, myeloid differentiation [Krumsiek11].



Example 6: Pseudotime-based vs. deep-learning based reconstruction of cell cycle from image data [Eulenberg17].



| theislab / graph_abstract        | ion               |                            | •               | Unwatch - 3  | ★ Star      | 8          | Fork     |
|----------------------------------|-------------------|----------------------------|-----------------|--------------|-------------|------------|----------|
| ⇔Code ③ Issues 2 门               | Pull requests 0   | Projects 0 Wiki            | Insights        | Settings     |             |            |          |
| enerate cellular maps of diffe   | rentiation manifo | lds with complex topologie | ²S.             |              |             |            | Ed       |
| 26 commits                       | i∕2 1 branch      | anch 🔿 0 releases 👫 1 co   |                 | ontributor   | ∲ MIT       |            |          |
| Branch: master + New pull reques | t                 |                            | Create new file | Upload files | Find file   | Clone or a | lownload |
| falexwolf updated readme         |                   |                            |                 | Lat          | test commit | 915f320 12 | days ag  |
| deep_learning                    |                   | updated everything         |                 |              |             | 13         | days ag  |
| minimal_examples                 |                   | matching the preprint      |                 |              |             | 13         | days ag  |
| in nestorowa16                   |                   | updated readmes            |                 |              |             | 12         | days ag  |
| in paul15                        |                   | updated readmes            |                 |              |             | 12         | days ag  |
| pbmcs                            |                   | removed 33k dataset        |                 |              |             | 13         | days ag  |
| 🖿 planaria                       |                   | matching the preprint      |                 |              |             | 13         | days ag  |
| .gitignore                       |                   | initial commit             |                 |              |             | 2 m        | onths ag |
|                                  |                   | add license                |                 |              |             | 2 m        | onths ag |
| E PEADME and                     |                   | updated readme             |                 |              |             | 12         | days ag  |

### Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells

This repository allows to reproduce analyses and figures of the preprint.

Graph abstraction is available within Scanpy. Central toplevel functions are:

- scanpy.api.tools.aga
- scanpy.api.plotting.aga\_graph
- scanpy.api.plotting.aga\_path

### Minimal examples with known ground truth

In minimal\_examples, we study clean simulated datasets with known ground truth. In particular, a dataset that contains a tree-like continuous manifold and disconnected clusters...



### .. and simple datasets that illustrate connectivity patterns of clusters.



### Differentiation manifolds in hematopoiesis

Here, we consider two well-studied datasets on hematopoietic differentiation.

### Data from Paul et al. (2015)

In *paul15*, we analyze data for myeloid progenitor development. This is the same data, which has served as benchmark for Monocle 2 (Qiu *et al.*, Nat. Meth., 2017) and DPT (Haghverdi *et al.*, Nat. Meth., 2016).



### Data from Nestorowa, Hamey et al. (2016)

nestorowa16, we analyze data for early hematopoietic differentation.



### Lineage tree for whole cell atlas of an adult animal

In planaria, we reconstruct the lineage tree of the whole cell atlas of planaria (Plass, Jordi et al., submitted, 2017).



### Deep Learning

In deep\_learning, we use deep learning to generate a feature space and, by that, a distance metric, which induces a nearest-neighbor graph. For the problem of reconstructing cell-cycle Eulenberg, Köhler, et al., Nat. Commun. (2017), we find that graph abstraction correctly separates a small cluster of dead cells from the cell evolution through G1, S and G2 phase.





### PBMC cells

For all of the following scRNA-seq datasets (3K and 68K PBMC cells, all 10X Genomics), graph abstraction reconstructs correct lineage motifs. As the data is disconnected in large parts, a global lineage tree cannot be informed.







### Thanks to

Machine Learning group at Helmholtz Munich, in particular, Philipp Angerer and Fabian Theis.

## Thank you for your attention!

### Preservation of topology under zooming



### Preservation of topology under zooming





### Preservation of topology under zooming





### Scanpy code snippets

In [3]: filename\_data = './data/pbmc3k\_filtered\_gene\_bc\_matrices/hg19/matrix.mtx'
filename\_genes = './data/pbmc3k\_filtered\_gene\_bc\_matrices/hg19/genes.tsv'
filename\_barcodes = './data/pbmc3k\_filtered\_gene\_bc\_matrices/hg19/barcodes.tsv'
adata = sc.read(filename\_data).transpose()
adata.var\_names = np.loadtxt(filename\_genes, dtype='S')[:, 1]
adata.smp\_names = np.loadtxt(filename\_barcodes, dtype='S')

reading file ./write/data/pbmc3k\_filtered\_gene\_bc\_matrices/hg19/matrix.h5

### Basic filtering.

- In [4]: adata.smp['n\_counts'] = np.sum(adata.X, axis=1).A1
  sc.pp.filter\_cells(adata, min\_genes=200)
  sc.pp.filter\_genes(adata, min\_cells=3)
  - ... filtered out 0 outlier cells
  - $\ldots$  filtered out 19024 genes that are detected in less than 3 cells

Plot some information about mitochondrial genes, important for quality control

### A violin plot of the computed quality measures.

### In [6]: sc.pl.violin(adata, ['n\_genes', 'n\_counts', 'percent\_mito'], jitter=0.4, show=True)



- In [9]: sc.pp.normalize\_per\_cell(adata, scale\_factor=1e4)
  result = sc.pp.filter\_genes\_dispersion(adata.X, log=True,
  sc.pl.filter\_genes\_dispersion(result)
  - ... filter highly varying genes by dispersion and mean
     using `min\_disp`, `max\_disp`, `min\_mean` and `max\_mea
     --> set `n\_top\_genes` to simply select top-scoring genes



In [11]: adata\_corrected = sc.pp.regress\_out(adata,

smp\_keys=['n\_counts', 'percent\_mi
copy=True)

0:00:00.000 - regress out ['n\_counts', 'percent\_mito'] ... sparse input is densified and may lead to huge memory consumption

0:00:09.418 - finished

Compute PCA and make a scatter plot.

In [12]: sc.pp.scale(adata\_corrected, max\_value=10)

clipping at max\_value 10

In [13]: sc.tl.pca(adata\_corrected)

adata\_corrected.smp['X\_pca'] \*= -1 # multiply by 1 for correspondence sc.pl.pca\_scatter(adata\_corrected, color='CST3', right\_margin=0.2)

0:00:00.000 - compute PCA with n\_comps = 10 0:00:00.668 - finished, added the data representation "X\_pca" (adata.smp) the loadings "PC1", "PC2", ... (adata.var) and "pca variance ratio" (adata.add)

