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Scanpy

a Speedup: Scanpy vs. Cell Ranger R preprocessing visualization

clusteringdifferential expressionpseudotime analysis

b

c tSNE of clustered 1.3 million cells

Scalable Python-based alternative to established R packages for 
writing clean, comprehensive analysis pipelines.



Scanpy vs. Seurat

Benchmarked against Seurat, 2.7K 
cells. 

• preprocessing: <1 s vs. 14 s 

• regressing out unwanted sources of 
variation: 6 s vs. 129 s 

• PCA: <1 s vs. 45 s 

• clustering: 1.3 s vs. 65 s 

• tSNE: 6 s vs. 96 s 

• marker genes (approximation):      
0.8 s vs. 96 s

Satija et al., Nat. Biotechn. (2015)



Benchmarked against Cell 
Ranger R kit, 68K cells. 

• preprocessing: 14 s vs. 300 s 

• PCA: 17 s vs. 120 s 

• tSNE: 5 min vs. 26

Zheng et al., Nat. Commun. (2017)

Scanpy vs. Cell Ranger

of primary cells. To study immune populations within PBMCs,
we obtained fresh PBMCs from a healthy donor (Donor A).
8–9k cells were captured from each of 8 channels and pooled to
obtain B68k cells. Data from multiple sequencing runs
were merged using the Cell Ranger pipeline. At B20k reads
per cell, the median number of genes and UMI counts detected
per cell was B525 and 1,300, respectively (Fig. 3a and
Supplementary Fig. 5a). The UMI count is roughly 10% of
that from 293T and 3T3 samples at B20k reads per cell, likely
reflecting the differences in cells’ RNA content (B1 pg RNA
per cell in PBMCs versus B15 pg RNA per cell in 293T and
3T3 cells) (Supplementary Fig. 5a,b).

We performed clustering analysis to examine cellular hetero-
geneity among PBMCs. We applied PCA on the top
1,000 variable genes ranked by their normalized dispersion,
following a similar approach to Macosko et al.7 (Supplementary
Figs 3b and 5c and Supplementary Methods). K-means15

clustering on the first 50 PCs identified 10 distinct cell clusters,
which were visualized in two-dimensional projection of
t-distributed stochastic neighbour embedding (tSNE)16

(Supplementary Methods, Fig. 3b and Supplementary Fig. 5d).

To identify cluster-specific genes, we calculated the expression
difference of each gene between that cluster and average of
the rest of clusters. Examination of the top cluster-specific
genes revealed major subtypes of PBMCs at expected ratios17:
480% T cells (enrichment of CD3D, part of the T-cell receptor
complex, in clusters 1–3 and 6), B6% NK cells (enrichment of
NKG7 (ref. 18) in cluster 5), B6% B cells (enrichment of CD79A
(ref. 19) in cluster 7) and B7% myeloid cells (enrichment of
S100A8 and S100A9 (ref. 20) in cluster 9 (Supplementary
Methods, Fig. 3b–f, Supplementary Fig. 5e and Supplementary
Data 3). Finer substructures were detected within the T-cell
cluster; clusters 1, 4 and 6 are CD8þ cytotoxic T cells, whereas
clusters 2 and 3 are CD4þ T cells (Fig. 3e and Supplementary
Fig. 5f). The enrichment of NKG7 on cluster 1 cells implies a
cluster of activated cytotoxic T cells21 (Fig. 3f). Cells in cluster 3
showed high expression of CCR10 and TNFRSF18, markers
for memory T cells22 and regulatory T cells23 respectively, and
likely consisted of a mixture of memory and regulatory T cells
(Fig. 3c and Supplementary Fig. 5g). The presence of ID3,
which is important in maintaining a naive T-cell state24,
suggests that cluster 2 represents naive CD8 T cells, whereas
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Figure 3 | Distinct populations can be detected in fresh 68k PBMCs. (a) Distribution of number of genes (left) and UMI counts (right) detected per
68k PBMCs. (b) tSNE projection of 68k PBMCs, where each cell is grouped into one of the 10 clusters (distinguished by their colours). Cluster number is
indicated, with the percentage of cells in each cluster noted within parentheses. (c) Normalized expression (centred) of the top variable genes (rows) from
each of 10 clusters (columns) is shown in a heatmap. Numbers at the top indicate cluster number in (b), with connecting lines indicating the hierarchical
relationship between clusters. Representative markers from each cluster are shown on the right, and an inferred cluster assignment is shown on the left.
(d–i) tSNE projection of 68k PBMCs, with each cell coloured based on their normalized expression of CD3D, CD8A, NKG7, FCER1A, CD16 and S100A8. UMI
normalization was performed by first dividing UMI counts by the total UMI counts in each cell, followed by multiplication with the median of the total UMI
counts across cells. Then, we took the natural log of the UMI counts. Finally, each gene was normalized such that the mean signal for each gene is 0, and
standard deviation is 1. (j) tSNE projection of 68k PBMCs, with each cell coloured based on their correlation-based assignment to a purified subpopulation
of PBMCs. Subclusters within T cells are marked by dashed polygons. NK, natural killer cells; reg T, regulatory T cells.
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1.3M Neurons of 10x Genomics

Scanpy scales to >1M cells



AnnData - Annotated Data
• backed and memory mode  

• views on data 

• interface to .loom files, 10x 
Genomics HDF5 files 

• categorical data on HDF5 level 

• sparse data on HDF5 level 
(anndata.h5py, h5sparse) 

• arbitrary unstructured 
annotations 

• integration with pandas and 
conventions of Python 
ecosystem

github.com/theislab/anndata
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github.com/theislab/anndata



Graph representation
• High-dimensional data → make guess 

for distance metric d(x, y) → evaluate d 
locally → generate neighborhood graph 
of single cells 

• Typically, obtain d from preprocessing 
and something like euclidean distance. 

• Alternatively, learn the distance d: gene1
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Figure 2 | Representative images for the cell cycle stages as measured in brightfield, darkfield
and fluorescence channels. Seven cell cycle stages define seven classes. We only show one representative
image for the interphase classes G1, S, and G2, which can hardly be distinguished by eye.

Materials and Methods68

We used a data set of 32,266 asynchronously growing immortalized human T lymphocyte cells69

(Jurkat cells), which had previously been analyzed using traditional machine learning (Blasi et al.,70

2016; Hennig et al., 2016). Images of these cells can be classified into seven different stages of cell71

cycle (Figure 2), including phases of interphase (G1, S and G2) and phases of mitosis (Prophase,72

Anaphase, Metaphase and Telophase). In this data set, ground truth is based on the inclusion of73

two fluorescent stains: propodium iodine (PI) to quantify each cell’s DNA content and the mitotic74

protein monoclonal #2 (MPM2) antibody to identify cells in mitotic phases. These stains allow75

each cell to be labeled through a combination of algorithmic segmentation, morphology analysis of76

the fluorescence channels, and user inspection (Blasi et al., 2016). Note that 97.78% of samples in77

the dataset belong to one of the interphase classes G1, S and G2. The strong class imbalance in78

the dataset is related to the fact that interphase lasts — when considering the actual length of the79

biological process — a much longer period of time than mitosis.80

Recent advances in deep learning have shown that deep neural networks are able to learn powerful81

feature representations (Krizhevsky et al., 2012; Vincent et al., 2010; Szegedy et al., 2015; LeCun82

et al., 2015). For DeepFlow, we adapt the widely used “Inception” architecture (Szegedy et al.,83

2015), and optimize it for treating the relatively small input dimensions that occur in IFC data.84

The architecture consists in 13 three-layer “dual-path” modules (Suppl. Fig. 7), which process and85

aggregate visual information at an increasing scale. These 39 layers are followed by a standard86

convolution layer, a fully connected layer and the softmax classifier. Training this 42-layer deep87

network does not present any computational difficulty, as the first three layers consist in “reduction88

dual-path” modules (Suppl. Fig. 7), which strongly reduce the original input dimensions prior to89

convolutions in the following “normal dual-path modules”. The number of kernels used in each layer90

increases towards the end, until 336 feature maps with size 8 ⇥ 8 are obtained. A final average pooling91

operation melts the local resolution of these maps and generates the last 336-dimensional layer, which92

serves as an input for both classification and visualization. The neural network operates directly on93

the uniformly resized images from an arbitrary number of channels of the Imaging Flow Cytometer.94

It is trained with cell images that have been labeled as described above, using stochastic gradient95

3

Fig 4. tSNE-Visualization of the test set in terms of the last layer
representation. a, The representation arranges data along a cylinder, ordering the
different cell phases in correct chronological order (Green: G1, Orange: S, Cyan: G2,
Red: Prophase, Blue: Metaphase, Anaphase and Telophase not distinguished further
due to small number of representatives). The strong class imbalance between interphase
classes (G1: green, S: orange, G2: cyan) and mitotic phases (prophase: red, metaphase:
blue) can be seen. b, tSNE representation of the Interphases in activation space. The
color map now reflects the DNA content of cells, which increases from blue to red. c,
Randomly picked representatives of Cluster A. The cells have high circularity and well
defined borders. d, Randomly picked representatives of Cluster B.
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Figure 1 | Overview of DeepFlow — deep learning data analysis for imaging flow cytometry.
Images from all channels of the Imaging Flow Cytometer are uniformly resized, and input directly into
the neural network, which is trained on the classification task. The learned features serve for both the
classification objective and the visualization task.

Introduction34

A major current challenge and opportunity in biology is interpreting the increasing amount of35

information-rich and high-throughput single-cell data. Here, we consider imaging data from flu-36

orescence microscopy (Pepperkok and Ellenberg, 2006), in particular from imaging flow cytometry37

(Basiji et al., 2007). Imaging flow cytometry (IFC) combines the fluorescence sensitivity and high-38

throughput capabilities of flow cytometry with single-cell imaging. Relevant fluorescent labels are39

chosen to assess certain phenotypes of interest. The large number of single cells analyzed per sam-40

ple — often hundreds of thousands — makes imaging flow cytometry unusually well-suited to deep41

learning, which demands very large training sets.42

Further, IFC generates high-dimensional information for each cell, including spatially-mapped43

intensity information for thousands of pixels for each of several channels: brightfield and darkfield44

(which require no staining procedure) and, optionally, several fluorescence channels. This means45

a dramatic increase in information content as compared to the measurement of a single spatially46

integrated fluorescence intensity value for each channel, as in conventional flow cytometry (Brown47

and Wittwer, 2000). Finally, IFC provides one image for each single cell, and hence does not require48

whole-image segmentation.49

It is often not known in advance which morphological features are useful to distinguish specific,50

often rare, phenotypes in IFC. Classical computer vision algorithms are unlikely to extract sufficient51

metrics to capture all relevant morphological features. Deep learning, by contrast, potentially cap-52

tures many more subtleties of image data. Here, we present the deep learning based data analysis53

workflow DeepFlow — deep learning for imaging flow cytometry. It consists of a deep convolu-54

tional neural network combined with a standard softmax classifier and a visualization tool based on55

non-linear dimension reduction (Fig. 1).56

DeepFlow enables improved data analysis capabilities for IFC as compared to prior traditional57

machine learning methods (Eliceiri et al., 2012; Blasi et al., 2016; Jones et al., 2009; Dao et al., 2016).58

This is mainly due to three general advantages of deep learning over traditional machine learning:59

there is no need for cumbersome preprocessing and manual feature definition, classification accuracy60

is improved and learned features can be visualized to uncover their biological meaning. Other61

recent work on deep learning in high-throughput microscopy either relied on engineered features62

(Chen et al., 2016a), focused on segmentation and classification of whole images without addressing63

visualization of network features (Kraus et al., 2016). Reference (Pärnamaa and Parts, 2016) is64

most closely related to the present work, but neither presents an optimized solution to Imaging65

Flow Cytometry data, nor addresses the particular challenges of a continuous biological process, like66

cell cycle.67
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Eulenberg, Köhler et al., 
Nat. Commun. (2017)

Islam et al., Genome Research (2011)



Learned distances resolve batch effects
Scanpy 1.0  “Universal preprocessing”. No manual alignment necessary.



Neighbors
Class for representing data as a graph 
of neighborhood relations between data 
points. 

Simplest case: knn graph. 

• much faster than sklearn.neighbors 

• much faster than C, annoy, nmslib for 
< 100k cells 

Also, Neighbors offers functions related 
to stochastic processes on graphs, 
absent in igraph, networks, graph-tools. 

Scanpy 1.0 use umap implementation. 
Easily installed and very fast.

Scanpy 1.0



Scanpy 1.0



Many Scanpy tools use Neighbors

A single representation of the data for 
all common analysis tasks. 

• clustering 

• pseudotime inference 

• graph drawing 

• manifold learning (tSNE, diffmap, …) 

Trapnell et al., Bendall et al. (2014), Haghverdi et al. (2016), …

Islam et al., Genome Research (2011), …

Levine et al., Cell (2015), Xu et al. Bioinf (2015) …

Amir et al., Nat Biotechn (2013) …



A graph-based coordinate system
Graph Abstraction maps both connected and disconnected structure.

Wolf et al., bioRxiv (2017)
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Map of whole organism

Manifold learning, graph drawing [& topological data analysis]:  

• usually violate topological structure 

• for large data, provide too much detail, results far from “canonical”  

• graph drawing does not scale

coarse resolutioncoarse resolution coarse resolution

Plass et al., unpublished (2017)
Wolf et al., bioRxiv (2017)



coarse resolution finer resolution fine resolution

tree layout
Graph abstraction:  

• faithful to topological structure 

• provides the wished level of detail 

• extremely fast, scales arbitrarily

Map of whole organism Plass et al., unpublished (2017)
Wolf et al., bioRxiv (2017)



velocytocoarse resolution fine resolution

Graph abstraction:  

• enables topologically faithful visualisation at 
single-cell level 

• reveals putative lineages, which can be 
oriented, e.g., with velocyto 

• continuous coordinates, extending DPT

La Manno et al., bioRxiv (2017)

Haghverdi et al., Nat Meth (2016)

epidermal lineage

Map of whole organism Plass et al., unpublished (2017)
Wolf et al., bioRxiv (2017)



1.3M neurons 10x Genomics

Graph drawing not feasible. Abstracted graph representation takes 
around 1 h; tSNE around 4 h.



Scanpy’s API

Modular API. 

• sc.preprocessing 

• sc.tools 

• sc.plotting 

• sc.datasets 

• sc.settings 

• sc.logging



Scanpy’s use cases



Thank you for your attention!

Thanks to

Machine Learning group at Helmholtz Munich, in 
particular, Philipp Angerer and Fabian Theis.



a

b

c

d

e

Supplemental Figure 9 | Comparing topologies of abstracted graphs. a, b, Partitions obtained
using Louvain clustering in two runs with different parameters, equivalent to those shown in Figure 2a: both
abstracted graphs describe the same topology. Note that in Figure 2a, we use the Reingold-Tilford layout
to draw the tree whereas here, we use the FR layout also for the abstracted graph. c, Reference partitions
colored with the associated new partition that has the largest overlap.

normalized with respect to the reference groups N ⇤
1 (Supplemental Figure 9c) or with respect to the

new groups N ⇤
2 , respectively (Supplemental Figure 9d). In order to obtain a symmetric score that

measures how well two partitions mutually overlap — are mutually contained in each another — we
consider the minimum of both normalizations — the “minimal overlap” — for each combination of
groups (i1, i2) 2 (N ⇤

1 ,N ⇤
2 ). Supplemental Figure 9e colors each partition in N ⇤

1 with the partition
in N ⇤

2 with which it has the largest minimal overlap.

Supplemental Note 7.2: Comparing paths in abstracted graphs

For each shortest path between two leaf nodes in G⇤
2 , there is a shortest path between the associated

nodes in G⇤
1 . This enables to compare the two paths and to count the fraction of steps that are consis-

tent among two paths. To measure the agreement of the topologies between two abstracted graphs,
we compute the fraction of agreeing steps and the fraction of agreeing paths over all combinations
of leaf nodes in two given abstracted graphs.

For instance, consider the shortest path between leafs (21, 2) in the reference graph G⇤
1 and the

shortest path between leafs (7, 11) in the new graph G⇤
2 in Supplemental Figure 9a and b, respectively:

p1 = (21, 8, 18, 7, 9, 2), p1 2 G⇤
1

p2 = (7, 2, 9, 10, 11), p2 2 G⇤
2 . (10)
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Preservation of topology under zooming
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Scanpy code snippets


