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Scanpy vs. Seurat

Scanpy is benchmarked with Seurat. 

• preprocessing: <1 s vs. 14 s 

• regressing out unwanted sources of 
variation: 6 s vs. 129 s 

• PCA: <1 s vs. 45 s 

• clustering: 1.3 s vs. 65 s 

• tSNE: 6 s vs. 96 s 

• marker genes (approximation):      
0.8 s vs. 96 s

Satija et al., Nat. Biotechn. (2015)



Scanpy is benchmarked with 
Cell Ranger R kit. 

• preprocessing: 14 s vs. 300 s 

• PCA: 17 s vs. 120 s 

• tSNE 5 min vs. 26

Zheng et al., Nat. Commun. (2017)

Scanpy vs. Cell Ranger for 68k cells

of primary cells. To study immune populations within PBMCs,
we obtained fresh PBMCs from a healthy donor (Donor A).
8–9k cells were captured from each of 8 channels and pooled to
obtain B68k cells. Data from multiple sequencing runs
were merged using the Cell Ranger pipeline. At B20k reads
per cell, the median number of genes and UMI counts detected
per cell was B525 and 1,300, respectively (Fig. 3a and
Supplementary Fig. 5a). The UMI count is roughly 10% of
that from 293T and 3T3 samples at B20k reads per cell, likely
reflecting the differences in cells’ RNA content (B1 pg RNA
per cell in PBMCs versus B15 pg RNA per cell in 293T and
3T3 cells) (Supplementary Fig. 5a,b).

We performed clustering analysis to examine cellular hetero-
geneity among PBMCs. We applied PCA on the top
1,000 variable genes ranked by their normalized dispersion,
following a similar approach to Macosko et al.7 (Supplementary
Figs 3b and 5c and Supplementary Methods). K-means15

clustering on the first 50 PCs identified 10 distinct cell clusters,
which were visualized in two-dimensional projection of
t-distributed stochastic neighbour embedding (tSNE)16

(Supplementary Methods, Fig. 3b and Supplementary Fig. 5d).

To identify cluster-specific genes, we calculated the expression
difference of each gene between that cluster and average of
the rest of clusters. Examination of the top cluster-specific
genes revealed major subtypes of PBMCs at expected ratios17:
480% T cells (enrichment of CD3D, part of the T-cell receptor
complex, in clusters 1–3 and 6), B6% NK cells (enrichment of
NKG7 (ref. 18) in cluster 5), B6% B cells (enrichment of CD79A
(ref. 19) in cluster 7) and B7% myeloid cells (enrichment of
S100A8 and S100A9 (ref. 20) in cluster 9 (Supplementary
Methods, Fig. 3b–f, Supplementary Fig. 5e and Supplementary
Data 3). Finer substructures were detected within the T-cell
cluster; clusters 1, 4 and 6 are CD8þ cytotoxic T cells, whereas
clusters 2 and 3 are CD4þ T cells (Fig. 3e and Supplementary
Fig. 5f). The enrichment of NKG7 on cluster 1 cells implies a
cluster of activated cytotoxic T cells21 (Fig. 3f). Cells in cluster 3
showed high expression of CCR10 and TNFRSF18, markers
for memory T cells22 and regulatory T cells23 respectively, and
likely consisted of a mixture of memory and regulatory T cells
(Fig. 3c and Supplementary Fig. 5g). The presence of ID3,
which is important in maintaining a naive T-cell state24,
suggests that cluster 2 represents naive CD8 T cells, whereas
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Figure 3 | Distinct populations can be detected in fresh 68k PBMCs. (a) Distribution of number of genes (left) and UMI counts (right) detected per
68k PBMCs. (b) tSNE projection of 68k PBMCs, where each cell is grouped into one of the 10 clusters (distinguished by their colours). Cluster number is
indicated, with the percentage of cells in each cluster noted within parentheses. (c) Normalized expression (centred) of the top variable genes (rows) from
each of 10 clusters (columns) is shown in a heatmap. Numbers at the top indicate cluster number in (b), with connecting lines indicating the hierarchical
relationship between clusters. Representative markers from each cluster are shown on the right, and an inferred cluster assignment is shown on the left.
(d–i) tSNE projection of 68k PBMCs, with each cell coloured based on their normalized expression of CD3D, CD8A, NKG7, FCER1A, CD16 and S100A8. UMI
normalization was performed by first dividing UMI counts by the total UMI counts in each cell, followed by multiplication with the median of the total UMI
counts across cells. Then, we took the natural log of the UMI counts. Finally, each gene was normalized such that the mean signal for each gene is 0, and
standard deviation is 1. (j) tSNE projection of 68k PBMCs, with each cell coloured based on their correlation-based assignment to a purified subpopulation
of PBMCs. Subclusters within T cells are marked by dashed polygons. NK, natural killer cells; reg T, regulatory T cells.
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Zheng et al., Nat. Commun. (2017)

Scanpy scales to >1 million cells
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AnnData
Simple class for a data matrix 
with most general annotations. 

Nothing like this in Python. 

• .loom (Python, merely a file 
format) 

• VariantDataset (Python, 
Java, hail) 

• ExpressionSet (R) 

• “Seurat Object” (R, Seurat) 

• CellDataSet (R, Monocle) 

• SingleCellExperiment (R, 
Scran)

github.com/theislab/anndata, pypi/anndata

HDF5-backed on disk: cross-platform, 
cross-language.



Characteristics of single-cell data
Goal

Learn abstractions of biology 
(e.g. cellular identities), 
associations and mechanisms. 

Data

• high-dimensional 

• unstructured 

• sparse 

• noisy 

• non-linear
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challenges associated with studying the single-cell epigenome, and 
open problems associated with the increasing scale of single-cell 
experiments, the integration of diverse single-cell assays, and the use 
of these data to illuminate the organization of complex tissues.

Addressing technical variation in single-cell RNA-seq
We distinguish three sources of variation in scRNA-seq (Fig. 2, top). 
The first is technical variation, which is due to factors such as differences 
in cell integrity and lysis, RNA capture and cDNA conversion, and 
detection38,39. The second is allele-intrinsic variation, namely stochastic 
factors intrinsic to the molecular mechanisms that control gene 
expression40–42. For example, the bursting statistics of transcriptional 
initiation coupled to variable rates of mRNA degradation can lead to 
fluctuations in transcript levels over time in one cell, and to differences 
between otherwise ‘identical’ cells measured at a single time point. This 

Here we review key questions, progress, and open challenges in 
the development of computational methods in single-cell functional 
genomics, focusing primarily on scRNA-seq (we do not discuss 
single-cell genome analysis, as it was recently reviewed elsewhere37). 
We first distinguish key sources of variation in single cells, and 
experimental and computational strategies to tease them apart and 
to mitigate the effects of technical (unwanted) variation in order 
to explore the biological variation in the data. We highlight key 
current methods that can characterize the diverse factors involved 
in determining cellular identity, including cell type (with cell types 
forming a hierarchical taxonomy), continuous phenotypes, temporal 
progression (on linear, bifurcating, or cyclic trajectories), and spatial 
position in the tissue. We close with areas of substantial opportunity 
and challenges for future research, including emerging methods that 
harness single-cell data to dissect the molecular circuitry, unique 
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Figure 1  Diverse factors combine to create a cell’s unique identity, and computational methods reveal them. (a) A cell participates simultaneously in multiple 
biological contexts. The illustration depicts a particular cell (blue) as it experiences multiple contexts that shape its identity simultaneously (from left to 
right): environmental stimuli, such as nutrient availability or the binding of a signaling molecule to a receptor; a specific state on a developmental trajectory; 
the cell cycle; and a spatial context, which determines its physical environment (e.g., oxygen availability), cellular neighbors, and developmental cues 
(e.g., morphogen gradients). (b) The biological factors affecting the cell combine to create its unique, instantaneous identity, which is captured in the cell’s 
molecular profile. Computational methods dissect the molecular profile and tease apart facets of the cell’s identity, which are akin to ‘basis vectors’ that span 
a space of possible cellular identities. Key examples include (counterclockwise from top): (1) discrete cell types (e.g., cell populations in the retina (A.R. and 
colleagues30)); cell type frequency can vary by multiple orders of magnitude from the most abundant to the rarest subtype; (2) continuous phenotypes (e.g., 
the pro-inflammatory potential of each individual T cell, quantified through a gene expression signature derived from bulk pathogenic T cell profiles (N.Y., 
A.R. and colleagues1)); (3) unidirectional temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal vacillation between cellular 
states (e.g., oscillation through cell cycle; data taken from A.R. and colleagues102); (5) physical location (e.g., a cell’s location during embryo development 
determines its exposure to morphogen gradients. Dividing an organ into discrete spatial bins, combined with independent data on landmark genes, allows 
inference of spatial bins (highlighted) from which single cells had likely originated (figure adapted from A.R. and colleagues95). The scatterplots represent 
single cells (dots) projected onto two dimensions (e.g., first two principal components or using t-SNE).
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Represent single-cell data
• High-dimensional data → make guess 

for distance metric d(x, y) → evaluate d 
locally → generate neighborhood graph 
of single cells 

• Typically, obtain d from preprocessing 
and something like euclidean distance. 

• Alternatively, learn d:
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Figure 2 | Representative images for the cell cycle stages as measured in brightfield, darkfield
and fluorescence channels. Seven cell cycle stages define seven classes. We only show one representative
image for the interphase classes G1, S, and G2, which can hardly be distinguished by eye.

Materials and Methods68

We used a data set of 32,266 asynchronously growing immortalized human T lymphocyte cells69

(Jurkat cells), which had previously been analyzed using traditional machine learning (Blasi et al.,70

2016; Hennig et al., 2016). Images of these cells can be classified into seven different stages of cell71

cycle (Figure 2), including phases of interphase (G1, S and G2) and phases of mitosis (Prophase,72

Anaphase, Metaphase and Telophase). In this data set, ground truth is based on the inclusion of73

two fluorescent stains: propodium iodine (PI) to quantify each cell’s DNA content and the mitotic74

protein monoclonal #2 (MPM2) antibody to identify cells in mitotic phases. These stains allow75

each cell to be labeled through a combination of algorithmic segmentation, morphology analysis of76

the fluorescence channels, and user inspection (Blasi et al., 2016). Note that 97.78% of samples in77

the dataset belong to one of the interphase classes G1, S and G2. The strong class imbalance in78

the dataset is related to the fact that interphase lasts — when considering the actual length of the79

biological process — a much longer period of time than mitosis.80

Recent advances in deep learning have shown that deep neural networks are able to learn powerful81

feature representations (Krizhevsky et al., 2012; Vincent et al., 2010; Szegedy et al., 2015; LeCun82

et al., 2015). For DeepFlow, we adapt the widely used “Inception” architecture (Szegedy et al.,83

2015), and optimize it for treating the relatively small input dimensions that occur in IFC data.84

The architecture consists in 13 three-layer “dual-path” modules (Suppl. Fig. 7), which process and85

aggregate visual information at an increasing scale. These 39 layers are followed by a standard86

convolution layer, a fully connected layer and the softmax classifier. Training this 42-layer deep87

network does not present any computational difficulty, as the first three layers consist in “reduction88

dual-path” modules (Suppl. Fig. 7), which strongly reduce the original input dimensions prior to89

convolutions in the following “normal dual-path modules”. The number of kernels used in each layer90

increases towards the end, until 336 feature maps with size 8 ⇥ 8 are obtained. A final average pooling91

operation melts the local resolution of these maps and generates the last 336-dimensional layer, which92

serves as an input for both classification and visualization. The neural network operates directly on93

the uniformly resized images from an arbitrary number of channels of the Imaging Flow Cytometer.94

It is trained with cell images that have been labeled as described above, using stochastic gradient95
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Fig 4. tSNE-Visualization of the test set in terms of the last layer
representation. a, The representation arranges data along a cylinder, ordering the
different cell phases in correct chronological order (Green: G1, Orange: S, Cyan: G2,
Red: Prophase, Blue: Metaphase, Anaphase and Telophase not distinguished further
due to small number of representatives). The strong class imbalance between interphase
classes (G1: green, S: orange, G2: cyan) and mitotic phases (prophase: red, metaphase:
blue) can be seen. b, tSNE representation of the Interphases in activation space. The
color map now reflects the DNA content of cells, which increases from blue to red. c,
Randomly picked representatives of Cluster A. The cells have high circularity and well
defined borders. d, Randomly picked representatives of Cluster B.

PLOS 6/12

Fig 4. tSNE-Visualization of the test set in terms of the last layer
representation. a, The representation arranges data along a cylinder, ordering the
different cell phases in correct chronological order (Green: G1, Orange: S, Cyan: G2,
Red: Prophase, Blue: Metaphase, Anaphase and Telophase not distinguished further
due to small number of representatives). The strong class imbalance between interphase
classes (G1: green, S: orange, G2: cyan) and mitotic phases (prophase: red, metaphase:
blue) can be seen. b, tSNE representation of the Interphases in activation space. The
color map now reflects the DNA content of cells, which increases from blue to red. c,
Randomly picked representatives of Cluster A. The cells have high circularity and well
defined borders. d, Randomly picked representatives of Cluster B.

PLOS 6/12

Fig 4. tSNE-Visualization of the test set in terms of the last layer
representation. a, The representation arranges data along a cylinder, ordering the
different cell phases in correct chronological order (Green: G1, Orange: S, Cyan: G2,
Red: Prophase, Blue: Metaphase, Anaphase and Telophase not distinguished further
due to small number of representatives). The strong class imbalance between interphase
classes (G1: green, S: orange, G2: cyan) and mitotic phases (prophase: red, metaphase:
blue) can be seen. b, tSNE representation of the Interphases in activation space. The
color map now reflects the DNA content of cells, which increases from blue to red. c,
Randomly picked representatives of Cluster A. The cells have high circularity and well
defined borders. d, Randomly picked representatives of Cluster B.

PLOS 6/12

Results - Visualization
abnormal

normal

G1 S G2 Mitotic
16

Input

Global Average 
PoolingCNN Feed Forward

Feature Extraction

Classification

Visualization

Softmax

G1
S
G2
Prophase

Metaphase
Anaphase
Telophase

TSNE

...

Image Flow Cytometry DeepFlow Feature Extraction
on raw images

Classification + Visualization

Figure 1 | Overview of DeepFlow — deep learning data analysis for imaging flow cytometry.
Images from all channels of the Imaging Flow Cytometer are uniformly resized, and input directly into
the neural network, which is trained on the classification task. The learned features serve for both the
classification objective and the visualization task.

Introduction34

A major current challenge and opportunity in biology is interpreting the increasing amount of35

information-rich and high-throughput single-cell data. Here, we consider imaging data from flu-36

orescence microscopy (Pepperkok and Ellenberg, 2006), in particular from imaging flow cytometry37

(Basiji et al., 2007). Imaging flow cytometry (IFC) combines the fluorescence sensitivity and high-38

throughput capabilities of flow cytometry with single-cell imaging. Relevant fluorescent labels are39

chosen to assess certain phenotypes of interest. The large number of single cells analyzed per sam-40

ple — often hundreds of thousands — makes imaging flow cytometry unusually well-suited to deep41

learning, which demands very large training sets.42

Further, IFC generates high-dimensional information for each cell, including spatially-mapped43

intensity information for thousands of pixels for each of several channels: brightfield and darkfield44

(which require no staining procedure) and, optionally, several fluorescence channels. This means45

a dramatic increase in information content as compared to the measurement of a single spatially46

integrated fluorescence intensity value for each channel, as in conventional flow cytometry (Brown47

and Wittwer, 2000). Finally, IFC provides one image for each single cell, and hence does not require48

whole-image segmentation.49

It is often not known in advance which morphological features are useful to distinguish specific,50

often rare, phenotypes in IFC. Classical computer vision algorithms are unlikely to extract sufficient51

metrics to capture all relevant morphological features. Deep learning, by contrast, potentially cap-52

tures many more subtleties of image data. Here, we present the deep learning based data analysis53

workflow DeepFlow — deep learning for imaging flow cytometry. It consists of a deep convolu-54

tional neural network combined with a standard softmax classifier and a visualization tool based on55

non-linear dimension reduction (Fig. 1).56

DeepFlow enables improved data analysis capabilities for IFC as compared to prior traditional57

machine learning methods (Eliceiri et al., 2012; Blasi et al., 2016; Jones et al., 2009; Dao et al., 2016).58

This is mainly due to three general advantages of deep learning over traditional machine learning:59

there is no need for cumbersome preprocessing and manual feature definition, classification accuracy60

is improved and learned features can be visualized to uncover their biological meaning. Other61

recent work on deep learning in high-throughput microscopy either relied on engineered features62

(Chen et al., 2016a), focused on segmentation and classification of whole images without addressing63

visualization of network features (Kraus et al., 2016). Reference (Pärnamaa and Parts, 2016) is64

most closely related to the present work, but neither presents an optimized solution to Imaging65

Flow Cytometry data, nor addresses the particular challenges of a continuous biological process, like66

cell cycle.67

2

Eulenberg, Köhler et al., 
Nat. Commun. (2017)



DataGraph
Class for representing data as a graph 
of neighborhood relations between data 
points. 

Simplest case: knn graph. 

• much faster than sklearn.neighbors 

• much faster than R-wrapped C++ 

One idea: use matrix-multiplication for 
submatrices of data matrix in parallel. 

Also, DataGraph offers many functions 
related to stochastic processes on 
graphs, absent in igraph, networks, 
graph-tools.



Scanpy tools operate on DataGraph

A single framework for common 
analysis tasks. 

• clustering 

• pseudotime and trajectory 
inference 

Reconciling both: 

• graph abstraction

Trapnell et al., Bendall et al. (2014), Haghverdi et al. (2016) …

Levine et al., Cell (2015), Xu et al. Bioinf (2015) …

Wolf et al., bioRxiv (2017)
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Figure 1 | Graph abstraction at a glimpse. a, Sketch of a partitioned k-nearest-neighbor graph G of
single cell data. Partitions correspond to computationally detected clustering cell groups or experimentally
annotated cell groups. Highlighted are cells that could be representative for progenitor and fate states and an
exemplary path linking two states. Putative spurious edges are marked to illustrate the problem of tracing
representative paths through the data and deciding whether given partitions are in fact connected. At a
fixed scale, the clearest coarse-grained picture of the graph is obtained by the partitioning that maximizes
modularity (Supplemental Notes 3). b, Using a statistical model for the inter- and intra-connectivity of
partitions (Supplemental Notes 2), one generates a much simpler abstracted graph G⇤ whose nodes correspond
to the partitions of G. As G⇤ encodes all paths through G at the coarse-grained resolution defined by the scale
of the partitions, G⇤ encodes the same topology of G at this coarse-grained scale. Paths through nodes in G⇤

correspond to the set of all single-cell paths in G that pass through the corresponding groups and are robust to
spurious edges. c, The statistical model used to generate G⇤ allows to identify paths through groups of high
confidence — those along thick edges. Using a random-walk based distance measure d (Supplemental Note 4)
one can order cells according to their distance from a root cell. This allows to aggregate all single-cell paths
that correspond to the highlighted path in the abstracted graph (b) to trace the gene dynamics at single-cell
resolution. d, Following another paths through G⇤ one can compare the gene dynamics that is associated
with progressions to different fates. e, The abstraction of many biological processes, such as development,
is thought to be tree-like. Hence, we identify the tree-like subgraph T ⇤ (solid edges) within G⇤ (dashed and
solid edges) that best encodes the topology of G (Supplemental Note 8).

Graph abstraction enables consistent reconstruction of gene expression dynamics across datasets.

In myeloid hematopoiesis, progenitor cells differentiate into erythrocytes, megakaryoctyes, mono-
cytes, neutrophils and other blood cell types. We consider both a computational model of this
system (Supplemental Note 6) as well as two experimental data sets, based on the MARS-seq [17]
and Smart-seq2 protocol [18], respectively. Neighborhood relations among cells and thus the single-
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Figure 1 | Graph abstraction at a glimpse. a, Sketch of a partitioned k-nearest-neighbor graph G of
single cell data. Partitions correspond to computationally detected clustering cell groups or experimentally
annotated cell groups. Highlighted are cells that could be representative for progenitor and fate states and an
exemplary path linking two states. Putative spurious edges are marked to illustrate the problem of tracing
representative paths through the data and deciding whether given partitions are in fact connected. At a
fixed scale, the clearest coarse-grained picture of the graph is obtained by the partitioning that maximizes
modularity (Supplemental Notes ??). b, Using a statistical model for the inter- and intra-connectivity
of partitions (Supplemental Notes ??), one generates a much simpler abstracted graph G⇤ whose nodes
correspond to the partitions of G. As G⇤ encodes all paths through G at the coarse-grained resolution defined
by the scale of the partitions, G⇤ encodes the same topology of G at this coarse-grained scale. Paths through
nodes in G⇤ correspond to the set of all single-cell paths in G that pass through the corresponding groups
and are robust to spurious edges. c, The statistical model used to generate G⇤ allows to identify paths
through groups of high confidence — those along thick edges. Using a random-walk based distance measure
d (Supplemental Note ??) one can order cells according to their distance from a root cell. This allows to
aggregate all single-cell paths that correspond to the highlighted path in the abstracted graph (b) to trace
the gene dynamics at single-cell resolution. d, Following another paths through G⇤ one can compare the
gene dynamics that is associated with progressions to different fates. e, The abstraction of many biological
processes, such as development, is thought to be tree-like. Hence, we identify the tree-like subgraph T ⇤ (solid
edges) within G⇤ (dashed and solid edges) that best encodes the topology of G (Supplemental Note ??).

3



Scanpy’s API

Modular and intuitive API. 

• sc.preprocessing 

• sc.tools 

• sc.plotting 

• sc.datasets 

• sc.settings 

• … 

Command-line interface…



Scanpy’s use cases



Outlook
Very-short term 

• common file format for backing AnnData 

• AnnData based on pandas dataframes instead of structured arrays 

Mid-term 

• aggregation of datasets 

• better correction for confounders 

• include any standard, canonical analysis method… 

• module-wise installation (reduce dependencies?) 

Long-term 

• mini-batch learning



Thank you for your attention!

Thanks to

Machine Learning group at Helmholtz Munich, in 
particular, Philipp Angerer and Fabian Theis.



Scanpy code snippets


