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• Dynamical Mean-Field Theory

• Machine Learning
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“Tensor Trains I”: noninteracting bits

X1 X2 X3 X4
...

Vector of random variables X ∈ {0, 1}L with joint probability mass

p(x) = 1
Z e
−H(x)/T , H(x) =

L∑
n=1

xn

normalized with Z =
∑
x e
−H(x)/T .
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“Tensor Trains I”: noninteracting bits

X1 X2 X3 X4
...

Compute correlations via cov(Xn, Xm) = 〈XnXm〉 − 〈Xn〉〈Xn〉,

〈XnXm〉 =
∑
x

xnxm px.
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〈XnXm〉 =
∑
x

xnxm px.

. Naive brute force: 2L operations necessary.

. Monte Carlo: sampling in space of 2L states.
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“Tensor Trains I”: noninteracting bits

X1 X2 X3 X4
...

Better: independent degrees of freedom Xn imply separability

px = px1,x2,...,xL = 1
Z e
−

∑L
n=1 xn/T

= 1
Z ax1ax2 . . . axL , axn = e−xn/T .
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Better: independent degrees of freedom Xn imply separability

px = px1,x2,...,xL = 1
Z e
−

∑L
n=1 xn/T

= 1
Z ax1ax2 . . . axL , axn = e−xn/T .

Compute correlations in 2L operations . . .

〈XnXm〉 =
1

Z

(∑
xn

xnaxn

)(∑
xm

xmaxm

) L∏
k 6=n,m

(∑
xk

axk

)
= 〈Xn〉〈Xm〉 . . . there are none.
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“Tensor Trains II”: interacting bits (Ising model)

X1 X2 X3 X4
...

p̃x = 1
Z e
−H(x)/T , H(x) = −

L−1∑
n=1

xnxn+1.
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“Tensor Trains II”: interacting bits (Ising model)

X1 X2 X3 X4
...

Two-body interactions imply “almost – separability”

Z
∑
x

p̃x =
∑
x

ex1x2/T ex2x3/T . . .
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X1 X2 X3 X4
...

Two-body interactions imply “almost – separability”

Z
∑
x

p̃x =
∑
x

Ax1x2Ax2,x3 . . .

= gsumAA . . . , Axnxn+1 = exnxn+1/T , A ∈ R2×2,

where gsum is the grand sum.
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where gsum is the grand sum.

. Compare to non-interacting case

Z
∑
x

px =
∑
x

ax1ax2 . . . , axn = e−xn/T , a ∈ R2.
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“Tensor Trains II”: interacting bits (Ising model)

X1 X2 X3 X4
...

Compute correlations in 23L operations (L matrix products)

〈XnXm〉p̃ =
1

Z
gsum

n−1∏
k=1

(
A[k]

)
M

m−1∏
k=n

(
A[k]

)
M

L−1∏
k=m

(
A[k]

)
where M =

(
1 0
0 −1

)
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(
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. Compare to non-interacting case (2L operations)

〈XnXm〉p =
1

Z

(∑
xn

xnAxn

)(∑
xm

xmAxm

) ∏
k 6=n,m

(∑
xk
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“Tensor Trains III”: long-range interacting bit chain Wolf (2015)

X1 X2 X3 X4
...

px = 1
Z e
−H(x)/T , H(x) = −

L−2∑
n=1

xnxn+1xn+2

Z
∑
x

px =
∑
x

L−2∏
n=1

Axnxn+1xn+2

Axnxn+1xn+2 = exnxn+1xn+2/T

A ∈ R2×2×2

=
∑
x′

L−2∏
n=1

Bx′nx′n+1
Bt
x′n+1x

′
n+2

Bx′n(2xn+1+xn+2) = Axnxn+1xn+2

B ∈ R2×4

Tensor Train format . 1
2(23 + 43)L operations
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“Tensor Trains” in Statistical Mechanics

• Write probability mass function

p : {0, 1, ..., d}L → R, d, L ∈ N,

as vector
px = p(x), p ∈ Rd

L
,

which is indexed and parametrized by x ∈ {0, 1, ..., d}L.

If px = p(x) does not couple all index components xn among each
other, there is a low rank Tensor Train representation.

This reduces computational cost in summations over p(x) from
exponential to linear in system size.

• What about quantum mechanics?
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Statistical Mechanics vs. Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1 =
∑
x

px =
∑
x

〈x|p̂x|x〉,

where we used a somewhat exaggerated notation.

We now consider
quantum many-body states

|ψ〉 =
∑
x

cx|x〉,

where |x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xL〉 = |x1x2 . . . xL〉 is a tensor product of
single-particle basis states |xi〉. For example

|xi〉 ∈ {| ↑i〉, | ↓i〉}

• But, do we know anything about how the vector of coefficients c = (cx)
couples its components, so that the tensor train format is meaningful?
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For now we don’t have to. Simply try an ansatz!

• We can e.g. simply do a mean-field theory! Let us assume

cx
!

= ax1ax2 . . . axL =
∏
i

axi

then state can be manipulated doing ∼ L operations

|ψ〉 =
∑
x

cx|x〉
!

= |ψMF〉 =
∑
x

∏
i

axi |x〉 =
⊗∏
i

(∑
xi

axi |xi〉
)

• How to determine the factors axi? Variationally solve

∂axi
〈ψMF|H|ψMF〉
〈ψMF|ψMF〉

= 0.

• Approximation to ground state. Approximation is good if ground state is
in the same class of states as the ansatz |ψMF〉.
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Tensor Trains IV: Matrix Product States Schollwöck, arXiv:1008.3477 (2011)

• Relax mean-field assumption for coefficients of many body states

cx
!

= ax1ax2ax3 . . . axL =
∏
i

axi

to one that factorizes in matrices

cx
!

=
∑
{νi}

Ax1ν1A
x2
ν1ν2A

x3
ν2ν3 . . . A

xL
νL

=
∏
i

Axi

• An MPS can be manipulated with costs of Lm3, where m is the
dimension of the matrices Axi

|ψ〉 =
∑
x

cx|x〉
!

= |ψMPS〉 =
∑
x

∏
i

Axi |x〉

• Are ground states in the same class as MPS? Which is this class? Are
the coefficients cx in ground states weakly coupled?
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Tensor Trains IV: Weakly entangled states

Eisert, arXiv:1308:3318 (2013)

Gapped Hamiltonians with short range interactions.

• Physical correlations have a finite range.

• Entanglement fulfills area law: entanglement of a region A is
proportional to surface |∂A|, not volume |A|, of this region.

. There is a low-rank Tensor Train representation!
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Dynamical Mean-Field Theory
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Quantum Embedding

Eisert, arXiv:1308:3318 (2013)

• Dynamical Mean-Field Theory Metzner & Vollhardt (1989) Georges & Kotliar (1992)

• Density Matrix Embedding Theory Knizia & Chan, PRL 109, 186404 (2012)
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Dynamical Mean-Field Theory

1. Find function Λ(ω) that describes the bath.

2. Solve the reduced cluster problem.

. Use Tensor Trains to represent the wave function of the cluster.
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Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ∼ Density Matrix Renormalization Group (DMRG)

Algorithmic approaches

• Lanczos: unstable and imprecise
Garćıa, Hallberg & Rozenberg, PRL 93, 246403 (2004)

• dynamic (correction vector) DMRG: extremely expensive
Nishimoto & Jeckelmann, J. Phys.: Cond. Mat. 16, 7063 (2004)

Karski, Raas & Uhrig, PRB 72, 113110 (2005) Karski, Raas & Uhrig, PRB 77, 075116 (2008)

• Chebyshev and Fourier expansions: cheaper and precise
Ganahl, Thunström, Verstraete, Held & Evertz, PRB 90, 045144 (2014)

Wolf, McCulloch, Parcollet & Schollwöck, PRB 90, 115124 (2014a) . 2-site cluster!
Wolf, McCulloch & Schollwöck, PRB 90, 235131 (2014b) . entanglement and non-EQ!
Wolf, Justiniano, McCulloch & Schollwöck, PRB 91, 115144 (2015b) . relation Chebyshev/ Fourier!
de Vega, Schollwöck & Wolf, PRB 92, 155126 (2015) . bath discretization!

• Imaginary axis: again cheaper!
Wolf, Go, McCulloch, Millis & Schollwöck, PRX 5, 041032 (2015a) . 2-site cluster for 3-band model!
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Wolf, McCulloch, Parcollet & Schollwöck, PRB 90, 115124 (2014a) . 2-site cluster!
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Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ∼ Density Matrix Renormalization Group (DMRG)

Applications

• Non-thermal melting of Neel order in the Hubbard model
Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

• Benchmark quantum computing protocols
Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

• In general: situations not treatable by QMC and NRG, which can be

◦ correlated materials Linden et al., in progress (2016)

◦ gauge fields and topological phases

15 / 25



Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ∼ Density Matrix Renormalization Group (DMRG)

Applications

• Non-thermal melting of Neel order in the Hubbard model
Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

• Benchmark quantum computing protocols
Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

• In general: situations not treatable by QMC and NRG, which can be

◦ correlated materials Linden et al., in progress (2016)

◦ gauge fields and topological phases

15 / 25



Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ∼ Density Matrix Renormalization Group (DMRG)

Applications

• Non-thermal melting of Neel order in the Hubbard model
Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

• Benchmark quantum computing protocols
Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

• In general: situations not treatable by QMC and NRG, which can be

◦ correlated materials Linden et al., in progress (2016)

◦ gauge fields and topological phases

15 / 25



Machine Learning

16 / 25



Machine Learning

Estimate noisy functional relation

f : X → Y, Y = f(X) +N,

from data D = {(xi, yi)}
nsamples

i=1 .

• f : R28×28 → {2, 4}.
Stoudenmire & Schwab, NIPS (2016)

• Linear regression using Gaussian noise model

p
(
y
∣∣x,θ = (w, σ2)

)
= N

(
y
∣∣w1x+ w0, σ

2
)

Estimate parameters?

θ∗ = argmaxθp(θ|D,model, prior beliefs)

. Integrate and optimize a high-dimensional distribution.
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Graphical Models

Ising Model X1 X2 X3 X4
...

p(xn) =
∑

{xn′ |n′ 6=n}

p(x1, ..., xnmax)

=
∑

{xn′ |n′ 6=n}

Ax1x2Ax2x3 . . . Axnmax−1xnmax

Markov Chain X1 X2 X3 X4
...

p(xn) =
∑

{xn′ |n′ 6=n}

p(x1, ..., xnmax)

=
∑
xn−1

Axnxn−1p(xn−1)

. Here, the distribution itself factorizes!
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Directed Acyclic Graphs
Markov chain

p(x1, . . . , xnmax) = p(x1)

nmax−1∏
n=1

p(xn+1|xn)

General graph

p(x1, . . . , xnmax) =

nmax∏
n=1

p(xn|pa(xn))

X1

X2

Y

X3

Example: X1 = yellow teeth, X2 = smoke, Y = cancer, X3 = diet.
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Inferring gene regulation from single-cell data

• Infer causal structure of
gene regulation.

• Given a high-dimensional
stochastic process, infer
couplings among variables.

©
20

16
N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

2 | ADVANCE ONLINE PUBLICATION | NATURE METHODS

BRIEF COMMUNICATIONS

developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 
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Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).

Haghverdi, Büttner, Wolf, Buettner & Theis,
Nature Methods 13, 845 (2016)
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Time series data
Consider a d-dimensional time series (Xt), for example

X(t−2)1

X(t−2)2

X(t−2)3

X(t−1)1

X(t−1)2

X(t−1)3

Xt1

Xt2

Xt3

Xt1 = X(t−1)1 +Nt1

Xt2 = X(t−1)2 +Nt2

Xt3 = X(t−1)1 ∧X(t−1)2 +Nt3

One approach is Transfer Entropy, which is conditional mutual
information Schreiber, PRL 85, 461 (2000) (∼ Granger Causality Granger, Econometrica 37, 424 (1969))

TEi→j = MIX(t−1)i;Xtj |S

= HXtj |S −HXtj |X(t−1)i,S

where originally, S = X(t−1)j , and later S = {all observed variables}.
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Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5), and X3 = X1 +X2. Then X3

X1 6⊥⊥ X2 | X3.

. Granger Causality and Transfer Entropy yield information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. non-physical!

22 / 25



Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5), and X3 = X1 +X2. Then X3

X1 6⊥⊥ X2 | X3.

. Granger Causality and Transfer Entropy yield information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. non-physical!

22 / 25



Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5), and X3 = X1 +X2. Then X3

X1 6⊥⊥ X2 | X3.

. Granger Causality and Transfer Entropy yield information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. non-physical!

X1

X2

X3

22 / 25



Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5), and X3 = X1 +X2. Then X3

X1 6⊥⊥ X2 | X3.

. Granger Causality and Transfer Entropy yield information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. non-physical!

X(t−2)1

X(t−2)2

X(t−2)3

X(t−1)1

X(t−1)2

X(t−1)3

Xt1

Xt2

Xt3

22 / 25



Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5), and X3 = X1 +X2. Then X3

X1 6⊥⊥ X2 | X3.

. Granger Causality and Transfer Entropy yield information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. non-physical!

X(t−2)1

X(t−2)2

X(t−2)3

X(t−1)1

X(t−1)2

X(t−1)3

Xt1

Xt2

Xt3

. Need something different!

22 / 25



Systematic conditional independence tests
Constraint based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.

PC(a) Test Xi ⊥⊥ Xj |∅.
(b) On remaining edges and connected components, test

Xi ⊥⊥ Xj |Xk.
(c) And so forth.

3. Orient edges, where possible.

• Doesn’t work in gene expression time series as there is not enough
dynamic noise.

. In addition to statistical association among variables, test for functional
relation. . Geometry of data plays role. Wolf & Theis, in preparation (2016)
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Integrating on the graph Wolf, Fischer & Theis, in preparation (2016)

x0

x
1

dX0

dt
=

X0

1 +X0

1

1 +X1
−X0 +N0 =: V0

dX1

dt
=

X1

1 +X1

1

1 +X0
−X1 +N1 =: V1

Statistical model Ṽ

Ṽi =
∑
k

αkXk + β

Dynamics induced by Ṽ ?

For the stochastic-mechanistic model, X(t) = X0 +
∫ t
0 dt V (t).

For the statistic model Ṽ , “integrate on the graph”

Axi,xj = N
(
xi|x̃i(xj), σ2

)
(Markov Model)
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Summary

• Tensor Trains/ Matrix Product States: low-rank factorization of
high-dimensional distributions or wave functions.

• Dynamical Mean-Field Theory: learn something about a lattice problem
from a single cluster.

• Graphical Models in Machine Learning: exact factorization of
high-dimensional distribution wich applications, for example, in causal
inference.

Thanks to U. Schollwöck!

Thank you!
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