From Matrix Product States and Dynamical Mean-Field Theory to Machine Learning

Sommerfeld Theory Colloquium, LMU Munich November 9, 2016

F. Alexander Wolf | falexwolf.de Institute of Computational Biology Helmholtz Zentrum München

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

Outline

- Matrix Product States / Tensor Trains
- Dynamical Mean-Field Theory
- Machine Learning

$$(X_1)$$
 (X_2) (X_3) (X_4) ...

Vector of random variables $oldsymbol{X} \in \{0,1\}^L$ with joint probability mass

$$p(\boldsymbol{x}) = \frac{1}{Z}e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

$$(X_1)$$
 (X_2) (X_3) (X_4) ...

Vector of random variables $oldsymbol{X} \in \{0,1\}^L$ with joint probability mass

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

 $\triangleright \boldsymbol{p}$ has 2^L components $\boldsymbol{x} \in \{(0,0,...,0),(0,0,...,1),\dots\}.$

$$\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} X_2 \end{pmatrix} \begin{pmatrix} X_3 \end{pmatrix} \begin{pmatrix} X_4 \end{pmatrix} \cdots$$

Vector of random variables $oldsymbol{X} \in \{0,1\}^L$ with joint probability mass

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

 $Dash \, oldsymbol{p}$ has 2^L components $oldsymbol{x} \in \{(0,0,...,0),(0,0,...,1),\dots\}.$

 \triangleright Note $2^{100} \simeq 10^{30} \simeq 10^{15}$ TB.

$$\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} X_2 \end{pmatrix} \begin{pmatrix} X_3 \end{pmatrix} \begin{pmatrix} X_4 \end{pmatrix} \cdots$$

Compute correlations via $\operatorname{cov}(X_n, X_m) = \langle X_n X_m \rangle - \langle X_n \rangle \langle X_n \rangle$,

$$\langle X_n X_m \rangle = \sum_{\boldsymbol{x}} x_n x_m \, p_{\boldsymbol{x}}.$$

$$\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} X_2 \end{pmatrix} \begin{pmatrix} X_3 \end{pmatrix} \begin{pmatrix} X_4 \end{pmatrix} \cdots$$

Compute correlations via $\operatorname{cov}(X_n,X_m) = \langle X_n X_m \rangle - \langle X_n \rangle \langle X_n \rangle$,

$$\langle X_n X_m \rangle = \sum_{\boldsymbol{x}} x_n x_m \, p_{\boldsymbol{x}}.$$

 \triangleright Naive brute force: 2^L operations necessary.

 \triangleright Monte Carlo: sampling in space of 2^L states.

$$\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} X_2 \end{pmatrix} \begin{pmatrix} X_3 \end{pmatrix} \begin{pmatrix} X_4 \end{pmatrix} \cdots$$

Better: *independent* degrees of freedom X_n imply *separability*

$$p_{\boldsymbol{x}} = p_{x_1, x_2, \dots, x_L} = \frac{1}{Z} e^{-\sum_{n=1}^L x_n/T}$$
$$= \frac{1}{Z} a_{x_1} a_{x_2} \dots a_{x_L}, \quad a_{x_n} = e^{-x_n/T}.$$

$$\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} X_2 \end{pmatrix} \begin{pmatrix} X_3 \end{pmatrix} \begin{pmatrix} X_4 \end{pmatrix} \cdots$$

Better: *independent* degrees of freedom X_n imply *separability*

$$p_{\boldsymbol{x}} = p_{x_1, x_2, \dots, x_L} = \frac{1}{Z} e^{-\sum_{n=1}^L x_n/T}$$
$$= \frac{1}{Z} a_{x_1} a_{x_2} \dots a_{x_L}, \quad a_{x_n} = e^{-x_n/T}$$

Compute correlations in 2L operations ...

$$\begin{split} \langle X_n X_m \rangle &= \frac{1}{Z} \Big(\sum_{x_n} x_n a_{x_n} \Big) \Big(\sum_{x_m} x_m a_{x_m} \Big) \prod_{k \neq n, m}^L \Big(\sum_{x_k} a_{x_k} \Big) \\ &= \langle X_n \rangle \langle X_m \rangle \quad \dots \quad \text{there are none.} \end{split}$$

r

$$\widetilde{\boldsymbol{p}}_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1}^{L-1} x_n x_{n+1}.$$

$$X_1$$
 X_2 X_3 X_4 \cdots

Two-body interactions imply "almost - separability"

$$Z\sum_{\boldsymbol{x}}\widetilde{\boldsymbol{p}}_{\boldsymbol{x}}=\sum_{\boldsymbol{x}}e^{x_1x_2/T}e^{x_2x_3/T}\dots$$

$$X_1$$
 X_2 X_3 X_4 \cdots

Two-body interactions imply "almost - separability"

$$Z\sum_{\boldsymbol{x}}\widetilde{\boldsymbol{p}}_{\boldsymbol{x}}=\sum_{\boldsymbol{x}}A_{x_1x_2}A_{x_2,x_3}\ldots$$

$$X_1$$
 X_2 X_3 X_4 \cdots

Two-body interactions imply "almost - separability"

$$Z \sum_{\boldsymbol{x}} \widetilde{\boldsymbol{p}}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} A_{x_1 x_2} A_{x_2, x_3} \dots$$
$$= \operatorname{gsum} A A \dots, \qquad A_{x_n x_{n+1}} = e^{x_n x_{n+1}/T}, \quad A \in \mathbb{R}^{2 \times 2},$$

where gsum is the grand sum.

$$X_1$$
 X_2 X_3 X_4 \cdots

Two-body interactions imply "almost - separability"

$$\begin{split} Z\sum_{\boldsymbol{x}}\widetilde{\boldsymbol{p}}_{\boldsymbol{x}} &= \sum_{\boldsymbol{x}} A_{x_1x_2}A_{x_2,x_3}\dots \\ &= \mathsf{gsum}AA\dots, \qquad A_{x_nx_{n+1}} = e^{x_nx_{n+1}/T}, \quad A \in \mathbb{R}^{2 \times 2}, \end{split}$$

where gsum is the grand sum.

▷ Compare to non-interacting case

$$Z\sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} a_{x_1} a_{x_2} \dots, \qquad a_{x_n} = e^{-x_n/T}, \quad a \in \mathbb{R}^2.$$

$$X_1$$
 X_2 X_3 X_4 \cdots

Compute correlations in $2^{3}L$ operations (L matrix products)

$$\begin{split} \langle X_n X_m \rangle_{\widetilde{p}} &= \frac{1}{Z} \mathsf{gsum} \prod_{k=1}^{n-1} \left(A^{[k]} \right) M \prod_{k=n}^{m-1} \left(A^{[k]} \right) M \prod_{k=m}^{L-1} \left(A^{[k]} \right) \\ & \text{where} \quad M = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \end{split}$$

$$X_1$$
 X_2 X_3 X_4 \cdots

Compute correlations in $2^{3}L$ operations (L matrix products)

$$\langle X_n X_m \rangle_{\widetilde{p}} = \frac{1}{Z} \operatorname{gsum} \prod_{k=1}^{n-1} \left(A^{[k]} \right) M \prod_{k=n}^{m-1} \left(A^{[k]} \right) M \prod_{k=m}^{L-1} \left(A^{[k]} \right)$$
where $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 \triangleright Compare to non-interacting case (2L operations)

$$\langle X_n X_m \rangle_{\boldsymbol{p}} = \frac{1}{Z} \Big(\sum_{x_n} x_n A_{x_n} \Big) \Big(\sum_{x_m} x_m A_{x_m} \Big) \prod_{k \neq n, m} \Big(\sum_{x_k} A_{x_k} \Big)$$

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1}^{D-1} x_n x_{n+1} x_{n+2}$$

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1}^{L-2} x_n x_{n+1} x_{n+2}$$

$$A_{x_n x_{n+1} x_{n+2}} = e^{x_n x_{n+1} x_{n+2}/T}$$
$$A \in \mathbb{R}^{2 \times 2 \times 2}$$

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1}^{L-2} x_n x_{n+1} x_{n+2}$$

$$Z\sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \prod_{n=1}^{L-2} A_{x_n x_{n+1} x_{n+2}}$$

$$A_{x_n x_{n+1} x_{n+2}} = e^{x_n x_{n+1} x_{n+2}/T}$$
$$A \in \mathbb{R}^{2 \times 2 \times 2}$$

$$=\sum_{\boldsymbol{x}'}\prod_{n=1}^{L-2}B_{x'_nx'_{n+1}}B^t_{x'_{n+1}x'_{n+2}}$$

$$B_{x'_n(2x_{n+1}+x_{n+2})} = A_{x_n x_{n+1} x_{n+2}}$$

$$B \in \mathbb{R}^{2 \times 4}$$

$$p_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1}^{L-2} x_n x_{n+1} x_{n+2}$$

$$Z \sum_{x} p_{x} = \sum_{x} \prod_{n=1}^{L-2} A_{x_{n}x_{n+1}x_{n+2}}$$

$$A_{x_n x_{n+1} x_{n+2}} = e^{x_n x_{n+1} x_{n+2}/T}$$
$$A \in \mathbb{R}^{2 \times 2 \times 2}$$

$$=\sum_{\mathbf{x}'}\prod_{n=1}^{L-2}B_{x'_nx'_{n+1}}B_{x'_{n+1}x'_{n+2}}^t \quad B_{x'_n(2x_{n+1}+x_{n+2})}=A_{x_nx_{n+1}x_{n+2}}$$
$$B\in\mathbb{R}^{2\times 4}$$

Tensor Train format $\triangleright \frac{1}{2}(2^3 + 4^3)L$ operations

• Write probability mass function

$$p: \{0,1,...,d\}^L \to \mathbb{R}, \quad d,L \in \mathbb{N},$$

as vector

$$p_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{R}^{d^L},$$

which is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

• Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{R}, \quad d, L \in \mathbb{N},$$

as vector

$$p_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{R}^{d^L},$$

which is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = p(x)$ does *not* couple *all* index components x_n among each other, there is a low rank Tensor Train representation.

• Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{R}, \quad d, L \in \mathbb{N},$$

as vector

$$p_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{R}^{d^L},$$

which is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = p(x)$ does *not* couple *all* index components x_n among each other, there is a low rank Tensor Train representation.

This reduces computational cost in summations over p(x) from exponential to linear in system size.

• Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{R}, \quad d, L \in \mathbb{N},$$

as vector

$$p_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{R}^{d^L},$$

which is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = p(x)$ does *not* couple *all* index components x_n among each other, there is a low rank Tensor Train representation.

This reduces computational cost in summations over p(x) from exponential to linear in system size.

• What about quantum mechanics?

Statistical Mechanics vs. Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} p_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{p}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation.

Statistical Mechanics vs. Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} p_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{p}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation. We now consider quantum many-body states

$$|\psi
angle = \sum_{\boldsymbol{x}} c_{\boldsymbol{x}} |\boldsymbol{x}
angle,$$

where $|\mathbf{x}\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_L\rangle = |x_1x_2 \dots x_L\rangle$ is a tensor product of single-particle basis states $|x_i\rangle$. For example

$$|x_i\rangle \in \{|\uparrow_i\rangle, |\downarrow_i\rangle\}$$

Statistical Mechanics vs. Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} p_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{p}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation. We now consider quantum many-body states

$$|\psi
angle = \sum_{\boldsymbol{x}} c_{\boldsymbol{x}} |\boldsymbol{x}
angle,$$

where $|\mathbf{x}\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_L\rangle = |x_1x_2 \dots x_L\rangle$ is a tensor product of single-particle basis states $|x_i\rangle$. For example

$$|x_i\rangle \in \{|\uparrow_i\rangle, |\downarrow_i\rangle\}$$

But, do we know anything about how the vector of coefficients c = (c_x) couples its components, so that the tensor train format is meaningful?

For now we don't have to. Simply try an ansatz!

For now we don't have to. Simply try an ansatz!

• We can e.g. simply do a mean-field theory! Let us assume

$$c_{\boldsymbol{x}} \stackrel{!}{=} a^{x_1} a^{x_2} \dots a^{x_L} = \prod_i a^{x_i}$$

then state can be manipulated doing $\sim L$ operations

$$|\psi\rangle = \sum_{\boldsymbol{x}} c_{\boldsymbol{x}} |\boldsymbol{x}\rangle \stackrel{!}{=} |\psi_{\mathsf{MF}}\rangle = \sum_{\boldsymbol{x}} \prod_{i} a^{x_{i}} |\boldsymbol{x}\rangle = \prod_{i}^{\otimes} \left(\sum_{x_{i}} a^{x_{i}} |x_{i}\rangle\right)$$

For now we don't have to. Simply try an ansatz!

• We can e.g. simply do a mean-field theory! Let us assume

$$c_{\boldsymbol{x}} \stackrel{!}{=} a^{x_1} a^{x_2} \dots a^{x_L} = \prod_i a^{x_i}$$

then state can be manipulated doing $\sim L$ operations

$$|\psi\rangle = \sum_{\boldsymbol{x}} c_{\boldsymbol{x}} |\boldsymbol{x}\rangle \stackrel{!}{=} |\psi_{\mathsf{MF}}\rangle = \sum_{\boldsymbol{x}} \prod_{i} a^{x_{i}} |\boldsymbol{x}\rangle = \prod_{i}^{\otimes} \left(\sum_{x_{i}} a^{x_{i}} |x_{i}\rangle\right)$$

• How to determine the factors a^{x_i} ? Variationally solve

$$\partial_{a^{x_i}} \frac{\langle \psi_{\mathsf{MF}} | H | \psi_{\mathsf{MF}} \rangle}{\langle \psi_{\mathsf{MF}} | \psi_{\mathsf{MF}} \rangle} = 0.$$

 Approximation to ground state. Approximation is good if ground state is in the same class of states as the ansatz |ψ_{MF}⟩. Tensor Trains IV: Matrix Product States Schollwöck, arXiv:1008.3477 (2011)

• Relax mean-field assumption for coefficients of many body states

$$c_{\boldsymbol{x}} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$c_{\boldsymbol{x}} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1\nu_2}^{x_2} A_{\nu_2\nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

Tensor Trains IV: Matrix Product States Schollwöck, arXiv:1008.3477 (2011)

• Relax mean-field assumption for coefficients of many body states

$$c_{\boldsymbol{x}} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$c_{\boldsymbol{x}} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1 \nu_2}^{x_2} A_{\nu_2 \nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

• An MPS can be manipulated with costs of Lm^3 , where m is the dimension of the matrices A^{x_i}

$$|\psi
angle = \sum_{m{x}} c_{m{x}} |m{x}
angle \stackrel{!}{=} |\psi_{\mathsf{MPS}}
angle = \sum_{m{x}} \prod_i A^{x_i} |m{x}
angle$$

Tensor Trains IV: Matrix Product States Schollwöck, arXiv:1008.3477 (2011)

• Relax mean-field assumption for coefficients of many body states

$$c_{\boldsymbol{x}} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$c_{\boldsymbol{x}} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1 \nu_2}^{x_2} A_{\nu_2 \nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

• An MPS can be manipulated with costs of Lm^3 , where m is the dimension of the matrices A^{x_i}

$$|\psi\rangle = \sum_{\boldsymbol{x}} c_{\boldsymbol{x}} |\boldsymbol{x}\rangle \stackrel{!}{=} |\psi_{\mathsf{MPS}}\rangle = \sum_{\boldsymbol{x}} \prod_{i} A^{x_{i}} |\boldsymbol{x}\rangle$$

• Are ground states in the same *class* as MPS? Which is this class? Are the coefficients c_x in ground states *weakly* coupled?

Tensor Trains IV: Weakly entangled states

Eisert, arXiv:1308:3318 (2013)

Gapped Hamiltonians with short range interactions.

- Physical correlations have a finite range.
- Entanglement fulfills **area law**: entanglement of a region A is proportional to surface $|\partial A|$, not volume |A|, of this region.

Tensor Trains IV: Weakly entangled states

Eisert, arXiv:1308:3318 (2013)

Gapped Hamiltonians with short range interactions.

- Physical correlations have a finite range.
- Entanglement fulfills **area law**: entanglement of a region A is proportional to surface $|\partial A|$, not volume |A|, of this region.
- ▷ There is a low-rank Tensor Train representation!

Dynamical Mean-Field Theory
Quantum Embedding

Eisert, arXiv:1308:3318 (2013)

- Dynamical Mean-Field Theory Metzner & Vollhardt (1989) Georges & Kotliar (1992)
- Density Matrix Embedding Theory Knizia & Chan, PRL 109, 186404 (2012)

1. Find function $\Lambda(\omega)$ that describes the bath.

- 1. Find function $\Lambda(\omega)$ that describes the bath.
- 2. Solve the reduced cluster problem.

- 1. Find function $\Lambda(\omega)$ that describes the bath.
- 2. Solve the reduced cluster problem.

 \triangleright Use Tensor Trains to represent the wave function of the cluster.

Algorithmic approaches

• Lanczos: unstable and imprecise

García, Hallberg & Rozenberg, PRL 93, 246403 (2004)

Algorithmic approaches

• Lanczos: unstable and imprecise

García, Hallberg & Rozenberg, PRL 93, 246403 (2004)

• dynamic (correction vector) DMRG: extremely expensive

Nishimoto & Jeckelmann, J. Phys.: Cond. Mat. 16, 7063 (2004)

Karski, Raas & Uhrig, PRB 72, 113110 (2005) Karski, Raas & Uhrig, PRB 77, 075116 (2008)

Algorithmic approaches

• Lanczos: unstable and imprecise

García, Hallberg & Rozenberg, PRL 93, 246403 (2004)

- dynamic (correction vector) DMRG: extremely expensive Nishimoto & Jeckelmann, J. Phys.: Cond. Mat. 16, 7063 (2004) Karski, Raas & Uhrig, PRB 72, 113110 (2005) Karski, Raas & Uhrig, PRB 77, 075116 (2008)
- Chebyshev and Fourier expansions: cheaper and precise

Ganahl, Thunström, Verstraete, Held & Evertz, PRB 90, 045144 (2014)
Wolf, McCulloch, Parcollet & Schollwöck, PRB 90, 115124 (2014a)
Wolf, McCulloch & Schollwöck, PRB 90, 235131 (2014b)
Wolf, Justiniano, McCulloch & Schollwöck, PRB 91, 115144 (2015b)
de Vega, Schollwöck & Wolf, PRB 92, 155126 (2015)

Algorithmic approaches

• Lanczos: unstable and imprecise

García, Hallberg & Rozenberg, PRL 93, 246403 (2004)

- dynamic (correction vector) DMRG: extremely expensive Nishimoto & Jeckelmann, J. Phys.: Cond. Mat. 16, 7063 (2004) Karski, Raas & Uhrig, PRB 72, 113110 (2005) Karski, Raas & Uhrig, PRB 77, 075116 (2008)
- Chebyshev and Fourier expansions: cheaper and precise

Ganahl, Thunström, Verstraete, Held & Evertz, PRB 90, 045144 (2014)
Wolf, McCulloch, Parcollet & Schollwöck, PRB 90, 115124 (2014a) ▷ 2-site cluster!
Wolf, McCulloch & Schollwöck, PRB 90, 235131 (2014b) ▷ entanglement and non-EQ!
Wolf, Justiniano, McCulloch & Schollwöck, PRB 91, 115144 (2015b) ▷ relation Chebyshev/ Fourier!
de Vega, Schollwöck & Wolf, PRB 92, 155126 (2015) ▷ bath discretization!

Imaginary axis: again cheaper!

Wolf, Go, McCulloch, Millis & Schollwöck, PRX 5, 041032 (2015a) ▷ 2-site cluster for 3-band model!

Applications

• Non-thermal melting of Neel order in the Hubbard model

Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

Applications

• Non-thermal melting of Neel order in the Hubbard model

Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

• Benchmark quantum computing protocols

Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

Applications

• Non-thermal melting of Neel order in the Hubbard model

Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

• Benchmark quantum computing protocols

Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

- In general: situations not treatable by QMC and NRG, which can be
 - correlated materials Linden et al., in progress (2016)
 - $\circ\,$ gauge fields and topological phases

Estimate noisy functional relation

 $f: \mathcal{X} \to \mathcal{Y}, \qquad Y = f(X) + N,$

from data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{samples}}$.

Estimate noisy functional relation

$$f: \mathcal{X} \to \mathcal{Y}, \qquad Y = f(X) + N,$$

from data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{\text{samples}}}$.

• $f: \mathbb{R}^{28 \times 28} \rightarrow \{2, 4\}.$

Stoudenmire & Schwab, NIPS (2016)

222222222	a222222222222
22222222	a222222222222
22222222	222222222222
22222222	222222222222222
22222222	2222222222222
4444444	44494444444
444444	4444444444444444444
4444444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
44444444	444A4.4444444
44444444	444 444444 4444

Estimate noisy functional relation

$$f: \mathcal{X} \to \mathcal{Y}, \qquad Y = f(X) + N,$$

from data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{\text{samples}}}$.

• $f: \mathbb{R}^{28 \times 28} \rightarrow \{2, 4\}.$

Stoudenmire & Schwab, NIPS (2016)

• Linear regression using Gaussian noise model

$$p(y|x, \boldsymbol{\theta} = (\boldsymbol{w}, \sigma^2)) = \mathcal{N}(y|w_1x + w_0, \sigma^2)$$

Estimate noisy functional relation

$$f: \mathcal{X} \to \mathcal{Y}, \qquad Y = f(X) + N,$$

from data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{\text{samples}}}$.

• $f: \mathbb{R}^{28 \times 28} \rightarrow \{2, 4\}.$

Stoudenmire & Schwab, NIPS (2016)

2222222222222222222222
222222222222222222222222222222222222222
2222222222222222222222222222
222222222222222222222222222222222222222
222212222222222222222222222222222222222
44444444444444444444444444444444444444
니 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
44444444444444444444444444444444444444
44444444444444444444444444444444444444
444444444444444444444444444444444444444

• Linear regression using Gaussian noise model

$$p(y|x, \boldsymbol{\theta} = (\boldsymbol{w}, \sigma^2)) = \mathcal{N}(y|w_1x + w_0, \sigma^2)$$

Estimate parameters?

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathcal{D}, \operatorname{model}, \operatorname{prior beliefs})$$

Estimate noisy functional relation

$$f: \mathcal{X} \to \mathcal{Y}, \qquad Y = f(X) + N,$$

from data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{\text{samples}}}$.

• $f: \mathbb{R}^{28 \times 28} \rightarrow \{2, 4\}.$

Stoudenmire & Schwab, NIPS (2016)

22222222222222222222222
222222222222222222222222222222222222222
222222222222222222222222222
222222222222222222222222222222222222222
222212222222222222222222222222222222222
444 444444444444444444444
니 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
44444444444444444444444444444444444444
44444444444444444444444444444444444444
444444444444444444444444444444444444444

• Linear regression using Gaussian noise model

$$p(y|x, \boldsymbol{\theta} = (\boldsymbol{w}, \sigma^2)) = \mathcal{N}(y|w_1x + w_0, \sigma^2)$$

Estimate parameters?

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathcal{D}, \operatorname{model}, \operatorname{prior beliefs})$$

▷ Integrate and optimize a high-dimensional distribution.

Ising Model

Ising Model

$$p(x_n) = \sum_{\{x_{n'} \mid n' \neq n\}} p(x_1, ..., x_{n_{\max}})$$
$$= \sum_{\{x_{n'} \mid n' \neq n\}} A_{x_1 x_2} A_{x_2 x_3} \dots A_{x_{n_{\max}-1} x_{n_{\max}}}$$

Ising Model

$$p(x_n) = \sum_{\{x_{n'} \mid n' \neq n\}} p(x_1, ..., x_{n_{\max}})$$
$$= \sum_{\{x_{n'} \mid n' \neq n\}} A_{x_1 x_2} A_{x_2 x_3} \dots A_{x_{n_{\max}-1} x_{n_{\max}}}$$

Markov Chain

Ising Model

$$p(x_n) = \sum_{\{x_{n'} \mid n' \neq n\}} p(x_1, \dots, x_{n_{\max}})$$
$$= \sum_{\{x_{n'} \mid n' \neq n\}} A_{x_1 x_2} A_{x_2 x_3} \dots A_{x_{n_{\max}-1} x_{n_{\max}}}$$

Markov Chain

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \cdots$$

$$p(x_n) = \sum_{\{x_{n'} \mid n' \neq n\}} p(x_1, ..., x_{n_{\max}})$$
$$= \sum_{x_{n-1}} A_{x_n x_{n-1}} p(x_{n-1})$$

▷ Here, the distribution itself factorizes!

Directed Acyclic Graphs Markov chain

$$p(x_1, \dots, x_{n_{\max}}) = p(x_1) \prod_{n=1}^{n_{\max}-1} p(x_{n+1}|x_n)$$

Directed Acyclic Graphs Markov chain

$$p(x_1, \dots, x_{n_{\max}}) = p(x_1) \prod_{n=1}^{n_{\max}-1} p(x_{n+1}|x_n)$$

General graph

Directed Acyclic Graphs Markov chain

$$p(x_1, \dots, x_{n_{\max}}) = p(x_1) \prod_{n=1}^{n_{\max}-1} p(x_{n+1}|x_n)$$

General graph

Example: X_1 = yellow teeth, X_2 = smoke, Y = cancer, X_3 = diet.

Inferring gene regulation from single-cell data

• Infer causal structure of gene regulation.

Haghverdi, Büttner, Wolf, Buettner & Theis, Nature Methods 13, 845 (2016)

Inferring gene regulation from single-cell data

- Infer causal structure of gene regulation.
- Given a high-dimensional stochastic process, infer couplings among variables.

Haghverdi, Büttner, Wolf, Buettner & Theis, Nature Methods 13, 845 (2016)

Time series data

Consider a *d*-dimensional time series (X_t) , for example

Time series data

Consider a *d*-dimensional time series (X_t) , for example

$$X_{t1} = X_{(t-1)1} + N_{t1}$$

$$X_{t2} = X_{(t-1)2} + N_{t2}$$

$$X_{t3} = X_{(t-1)1} \wedge \overline{X}_{(t-1)2} + N_{t3}$$

Time series data

Consider a *d*-dimensional time series (X_t) , for example

One approach is **Transfer Entropy**, which is conditional mutual information $_{\text{Schreiber, PRL 85, 461(2000)}}$ (~ Granger Causality $_{\text{Granger, Econometrica 37, 424(1969)}}$)

$$\begin{aligned} \mathsf{TE}_{i \to j} &= \mathsf{MI}_{X_{(t-1)i}; X_{tj} \mid S} \\ &= H_{X_{tj} \mid S} - H_{X_{tj} \mid X_{(t-1)i}, S} \end{aligned}$$

where originally, $S = X_{(t-1)j}$, and later $S = \{$ all observed variables $\}$.

• Conditioning on all variables leads to terrible *curse of dimensionality*.

- Conditioning on all variables leads to terrible curse of dimensionality.
- Say $X_1, X_2 \sim \text{Ber}(0.5)$, and $X_3 = X_1 + X_2$. Then X_3

 $X_1 \not\!\!\perp X_2 \mid X_3.$

- Conditioning on all variables leads to terrible curse of dimensionality.
- Say $X_1, X_2 \sim \text{Ber}(0.5)$, and $X_3 = X_1 + X_2$. Then X_3

$$X_1 \not\!\!\!\perp X_2 \mid X_3.$$

 $\triangleright \mbox{ Granger Causality and Transfer Entropy yield information flow} X_{(t-1)1} \rightarrow X_{t2}. \mbox{ But it's non-causal, i.e. non-physical!}$

- Conditioning on all variables leads to terrible curse of dimensionality.
- Say $X_1, X_2 \sim \text{Ber}(0.5)$, and $X_3 = X_1 + X_2$. Then X_3

$$X_1 \not\!\!\!\perp X_2 \mid X_3.$$

 $\triangleright \text{ Granger Causality and Transfer Entropy yield information flow} X_{(t-1)1} \rightarrow X_{t2}.$ But it's non-causal, i.e. non-physical!

$$X_{(t-2)1} \rightarrow X_{(t-1)1} \rightarrow X_{t1}$$

$$X_{(t-2)2} \rightarrow X_{(t-1)2} \rightarrow X_{t2}$$

$$X_{(t-2)3} \rightarrow X_{(t-1)3} \rightarrow X_{t3}$$

- Conditioning on all variables leads to terrible curse of dimensionality.
- Say $X_1, X_2 \sim \text{Ber}(0.5)$, and $X_3 = X_1 + X_2$. Then X_3

$$X_1 \not\!\!\!\perp X_2 \mid X_3.$$

 $\triangleright \text{ Granger Causality and Transfer Entropy yield information flow} X_{(t-1)1} \rightarrow X_{t2}.$ But it's non-causal, i.e. non-physical!

$$X_{(t-2)1} \rightarrow X_{(t-1)1} \rightarrow X_{t1}$$

$$X_{(t-2)2} \rightarrow X_{(t-1)2} \rightarrow X_{t2}$$

$$X_{(t-2)3} \rightarrow X_{(t-1)3} \rightarrow X_{t3}$$

▷ Need something different!

Systematic conditional independence tests

Constraint based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

1. Start with a fully connected graph.
- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.

Constraint based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions $X_i \perp X_j | S$.

Constraint based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions $X_i \perp X_j | S$. PC(a) Test $X_i \perp X_j | \emptyset$.

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.
- SGS Test all combinations and conditions $X_i \perp X_j | S$.
 - PC(a) Test $X_i \perp X_j | \varnothing$.
 - (b) On remaining edges and connected components, test $X_i \perp X_j | X_k$.

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.
- SGS Test all combinations and conditions $X_i \perp X_j | S$.
 - PC(a) Test $X_i \perp X_j | \varnothing$.
 - (b) On remaining edges and connected components, test $X_i \perp X_j | X_k$.
 - (c) And so forth.

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.
- SGS Test all combinations and conditions $X_i \perp X_j | S$.
 - PC(a) Test $X_i \perp X_j | \varnothing$.
 - (b) On remaining edges and connected components, test $X_i \perp X_j | X_k$.
 - (c) And so forth.
- 3. Orient edges, where possible.

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.
- SGS Test all combinations and conditions $X_i \perp X_j | S$.
 - PC(a) Test $X_i \perp X_j | \varnothing$.
 - (b) On remaining edges and connected components, test $X_i \perp X_j | X_k$.
 - (c) And so forth.
- 3. Orient edges, where possible.
- Doesn't work in gene expression time series as there is not enough dynamic noise.

Constraint based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

- 1. Start with a fully connected graph.
- 2. Reduce edges by conditional independence tests.
- SGS Test all combinations and conditions $X_i \perp X_j | S$.

PC(a) Test $X_i \perp X_j | \varnothing$.

- (b) On remaining edges and connected components, test $X_i \perp X_j | X_k$.
- (c) And so forth.
- 3. Orient edges, where possible.
- Doesn't work in gene expression time series as there is not enough dynamic noise.
- ▷ In addition to statistical association among variables, test for functional relation. ▷ Geometry of data plays role. Wolf & Theis, in preparation (2016)

$$\frac{dX_0}{dt} = \frac{X_0}{1+X_0} \frac{1}{1+X_1} - X_0 + N_0 =: V_0$$
$$\frac{dX_1}{dt} = \frac{X_1}{1+X_1} \frac{1}{1+X_0} - X_1 + N_1 =: V_1$$

 x_0

$$\frac{dX_0}{dt} = \frac{X_0}{1+X_0} \frac{1}{1+X_1} - X_0 + N_0 =: V_0$$
$$\frac{dX_1}{dt} = \frac{X_1}{1+X_1} \frac{1}{1+X_0} - X_1 + N_1 =: V_1$$

Statistical model \widetilde{V}

$$\widetilde{V}_i = \sum_k \alpha_k X_k + \beta$$

 x_0

$$\frac{dX_0}{dt} = \frac{X_0}{1+X_0} \frac{1}{1+X_1} - X_0 + N_0 =: V_0$$
$$\frac{dX_1}{dt} = \frac{X_1}{1+X_1} \frac{1}{1+X_0} - X_1 + N_1 =: V_1$$

Statistical model \widetilde{V}

$$\widetilde{V}_i = \sum_k \alpha_k X_k + \beta$$

Dynamics induced by \widetilde{V} ?

 x_0

$$\frac{dX_0}{dt} = \frac{X_0}{1+X_0} \frac{1}{1+X_1} - X_0 + N_0 =: V_0$$
$$\frac{dX_1}{dt} = \frac{X_1}{1+X_1} \frac{1}{1+X_0} - X_1 + N_1 =: V_1$$
Statistical model \tilde{V}
$$\tilde{V}_i = \sum_k \alpha_k X_k + \beta$$

Dynamics induced by \widetilde{V} ?

For the stochastic-mechanistic model, $\mathbf{X}(t) = \mathbf{X}_0 + \int_0^t dt \ \mathbf{V}(t)$.

$$\frac{dX_0}{dt} = \frac{X_0}{1+X_0} \frac{1}{1+X_1} - X_0 + N_0 =: V_0$$
$$\frac{dX_1}{dt} = \frac{X_1}{1+X_1} \frac{1}{1+X_0} - X_1 + N_1 =: V_1$$
Statistical model \widetilde{V}
$$\widetilde{V}_i = \sum_k \alpha_k X_k + \beta$$

Dynamics induced by \widetilde{V} ?

For the stochastic-mechanistic model, $\mathbf{X}(t) = \mathbf{X}_0 + \int_0^t dt \ \mathbf{V}(t)$.

For the statistic model $\widetilde{m{V}}$, "integrate on the graph"

$$A_{oldsymbol{x}_i,oldsymbol{x}_j} = \mathcal{N}ig(oldsymbol{x}_i|oldsymbol{\widetilde{x}}_i(oldsymbol{x}_j),\sigma^2ig)$$
 (Markov Model)

• Tensor Trains/ Matrix Product States: low-rank factorization of high-dimensional distributions or wave functions.

- Tensor Trains/ Matrix Product States: low-rank factorization of high-dimensional distributions or wave functions.
- Dynamical Mean-Field Theory: learn something about a lattice problem from a single cluster.

- Tensor Trains/ Matrix Product States: low-rank factorization of high-dimensional distributions or wave functions.
- Dynamical Mean-Field Theory: learn something about a lattice problem from a single cluster.
- Graphical Models in Machine Learning: exact factorization of high-dimensional distribution wich applications, for example, in causal inference.

- Tensor Trains/ Matrix Product States: low-rank factorization of high-dimensional distributions or wave functions.
- Dynamical Mean-Field Theory: learn something about a lattice problem from a single cluster.
- Graphical Models in Machine Learning: exact factorization of high-dimensional distribution wich applications, for example, in causal inference.

Thanks to U. Schollwöck!

- Tensor Trains/ Matrix Product States: low-rank factorization of high-dimensional distributions or wave functions.
- Dynamical Mean-Field Theory: learn something about a lattice problem from a single cluster.
- Graphical Models in Machine Learning: exact factorization of high-dimensional distribution wich applications, for example, in causal inference.

Thanks to U. Schollwöck!

Thank you!

- Balzer, K., F. A. Wolf, I. P. McCulloch, P. Werner & M. Eckstein, 2015, Phys. Rev. X 5, 031039.
- Bauer, B., D. Wecker, A. J. Millis, M. B. Hastings & M. Troyer, 2016, Phys. Rev. X 6, 031045.
- Eisert, J., 2013, Modeling and Simulation 3, 520.
- Ganahl, M., P. Thunström, F. Verstraete, K. Held & H. G. Evertz, 2014, Phys. Rev. B 90, 045144.
- García, D. J., K. Hallberg & M. J. Rozenberg, 2004, Phys. Rev. Lett. 93, 246403.
- Georges, A. & G. Kotliar, 1992, Phys. Rev. B 45, 6479.
- Granger, C. W. J., 1969, Econometrica 37, 424.
- Haghverdi, L., M. Büttner, F. A. Wolf, F. Buettner & F. J. Theis, 2016, Nature Methods 13, 845.
- Karski, M., C. Raas & G. S. Uhrig, 2005, Phys. Rev. B 72, 113110.
- Karski, M., C. Raas & G. S. Uhrig, 2008, Phys. Rev. B 77, 075116.
- Knizia, G. & G. K.-L. Chan, 2012, Phys. Rev. Lett. 109, 186404.
- Kreula, J. M., S. R. Clark & D. Jaksch, 2016, 6, 32940, 1510.05703v3.
- Metzner, W. & D. Vollhardt, 1989, Phys. Rev. Lett. 62, 324.
- Nishimoto, S. & E. Jeckelmann, 2004, J. Phys.: Condens. Matter 16, 613.
- Pearl, J. & T. Verma, 1991, A Theory of Inferred Causation, in Principles of Knowledge Representation and Reasoning: Proceeding of the Second International Conference, pp. 441–452.
- Schollwöck, U., 2011, Annals of Physics 326, 96.
- Schreiber, T., 2000, Physical Review Letters 85, 461.
- Spirtes, P., C. Glymour & R. Scheines, 2000, Causation, Prediction, and Search (MIT Press, Cambridge, MA, USA), 2nd edition.
- Stoudenmire, E. M. & D. J. Schwab, 2016, arXiv 1605.05775.
- de Vega, I., U. Schollwöck & F. A. Wolf, 2015, Phys. Rev. B 92, 155126.
- Wolf, F. A., 2015, Solving dynamical mean-field theory using matrix product states, Ph.D. thesis, LMU Munich.
- Wolf, F. A., D. S. Fischer & F. J. Theis, 2016, in preparation .
- Wolf, F. A., A. Go, I. P. McCulloch, A. J. Millis & U. Schollwöck, 2015a, Phys. Rev. X 5, 041032.
- Wolf, F. A., J. A. Justiniano, I. P. McCulloch & U. Schollwöck, 2015b, Phys. Rev. B 91, 115144.
- Wolf, F. A., I. P. McCulloch, O. Parcollet & U. Schollwöck, 2014a, Phys. Rev. B 90, 115124.
- Wolf, F. A., I. P. McCulloch & U. Schollwöck, 2014b, Phys. Rev. B 90, 235131.
- Wolf, F. A. & F. J. Theis, 2016, to be submitted .