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Problem figures from Jonas Peters

Gene A and gene B both correlate with a phenotype.

. What is the best prediction for the phenotype if we delete a gene?

. It certainly depends on the “causal structure” of the system.

How trustworthy is a given Machine Learning model? . Ribeiro, Singh & Guestrin, arXiv:1602.04938 (2016)

2 / 14



Problem figures from Jonas Peters

Gene A and gene B both correlate with a phenotype.

. What is the best prediction for the phenotype if we delete a gene?

. It certainly depends on the “causal structure” of the system.

How trustworthy is a given Machine Learning model? . Ribeiro, Singh & Guestrin, arXiv:1602.04938 (2016)

2 / 14



Problem figures from Jonas Peters

Gene A and gene B both correlate with a phenotype.

. What is the best prediction for the phenotype if we delete a gene?

. It certainly depends on the “causal structure” of the system.

. To describe the interventional distribution, a predictive model needs to
incorporate the causal structure of the system.

How trustworthy is a given Machine Learning model? . Ribeiro, Singh & Guestrin, arXiv:1602.04938 (2016)

2 / 14



Problem figures from Jonas Peters

Gene A and gene B both correlate with a phenotype.

. What is the best prediction for the phenotype if we delete a gene?

. It certainly depends on the “causal structure” of the system.

. To describe the interventional distribution, a predictive model needs to
incorporate the causal structure of the system.

How trustworthy is a given Machine Learning model? . Ribeiro, Singh & Guestrin, arXiv:1602.04938 (2016)

2 / 14



Predictive models

. To fit the observational data, we need

Y = f(XA, XB) +N | ∅.

Predicts wrong interventional distribution.

. To describe the interventional data, we’d rather set

Y = f(XA) +N | do(XB = 0).

Fails to describe observational distribution. Most likely, it’s also terribly
wrong in quantifying the effect of XA on Y .

. Measure the confounder XC , and assume there are no further
confounders. Then,

Y = f(XA, XC) +N | ∅ or do(XB = 0).

is a predictive model, which fits both observational and
interventional data. Some people call it “causal model”.
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Graphical models

Visualize cause-effect relations.
XC

XB Y

XA

This “looks” like a directed acyclic graphical (DAG) model, which is a
conditional independence structure that encodes

Xi ⊥⊥ NonDescendants(Xi) | Parents(Xi). (Markov property)

If we specify the functional form that generates the distribution as

Xi = fi(Pa(Xi), Ni),

we call the DAG structural equation model.
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Relation to causality

Observational distribution (Markov factorization)

p(X1, . . . , Xd) =

d∏
i=1

p(Xi|Pa(Xi))
e.g.
=

d∏
i=1

N (Xi|fi(Pa(Xi)), σ
2)

Interventional distribution (“surgery on the graph”)

p(X1, . . . , Xd|do(Xj = xj)) =
∏
i 6=j

p(Xi|Pa(Xi), Xj = xj)

• Correct interventional distributions are only obtained from the
observational distribution, if all edges denote cause-effect relationships.
. The likelihood for interventional data is highly sensitive to non-causal

edges.

. The model can efficiently be learned and easily falsified.
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Structure Learning

How to learn conditional independence structure from data?

• Constraint-based methods. Pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)

Perform systematic conditional independence tests.

+ PC algorithm scales well to large dimensions.
+ Consistency results exist.
− “Not very reliable”.
− Not a generative method.
− Problematic in the presence of hidden variables.

• Score-based methods. Chickering (2002)

Maximize the likelihood or posterior of a graphical model.

− Does not scale.
− Consistency results only in low dimensions.
+ “More reliable”.
+ Generative method.
+ Bayesian ansatz allows to resolve hidden variables.
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SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.

PC(a) Test Xi ⊥⊥ Xj |∅.
(b) On remaining edges and connected components, test

Xi ⊥⊥ Xj |Xk.
(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.

PC(a) Test Xi ⊥⊥ Xj |∅.
(b) On remaining edges and connected components, test

Xi ⊥⊥ Xj |Xk.
(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.

PC(a) Test Xi ⊥⊥ Xj |∅.
(b) On remaining edges and connected components, test

Xi ⊥⊥ Xj |Xk.
(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

Greedy equivalence search Chickering (2002)

GES is most popular score-based method.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



SGS and PC algorithm Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions Xi ⊥⊥ Xj |S.
PC(a) Test Xi ⊥⊥ Xj |∅.

(b) On remaining edges and connected components, test
Xi ⊥⊥ Xj |Xk.

(c) And so forth.

3. Orient edges, where possible: colliders.

Greedy equivalence search Chickering (2002)

GES is most popular score-based method.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.

7 / 14



Note: Faithfulness and Biological Networks

• A distribution is faithful to the graph G, if there are no other
independence relations than those encoded in the graph.
. All variable couplings in the distribution lead to statistical association.

One can easily construct distributions that do not show statistical
associations between coupled variables. For example,

Y = (X1 ∧X2) ∨ (X1 ∧X2), X1, X2 ∼ Ber(0.5),

implies

Y ⊥⊥ X1 Y ⊥⊥ X2.

Then, only the interventional distribution shows association

Y = X1 | do(X2 = 0), X1 ∼ Ber(0.5).

. Aside from unmeasured confounders, violated faithfulness poses the
strongest limitation to causal conclusions in biology.
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Time series data
Consider a d-dimensional time series Xti, for example

Xt1 = X(t−1)1 +Nt1

Xt2 = X(t−1)2 +Nt2

Xt3 = X(t−1)1 ∧X(t−1)2 +Nt3

X(t−2)1

X(t−2)2

X(t−2)3

X(t−1)1

X(t−1)2

X(t−1)3

Xt1

Xt2

Xt3

• Time ordering resolves directions on the graph!

. Here: Xt2 ⊥⊥ X(t−1)3|X(t−1)2, but Xt3 6⊥⊥ X(t−1)2|X(t−1)3.

• Granger Causality and Transfer Entropy correspond to specific tests
in the PC algorithm, but get the example above wrong.
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Inferring gene regulation from single-cell data

Structure learning on gene expres-
sion pseudotime series is hard.

• Few dynamic noise. Relatively
non-informative Hill kinetics.

. Use global geometric properties
of the data.

. Developed PC algorithm with
tests of functional relations in-
stead of statistical associations.
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developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 

DC1

D
C

2

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

DC1

D
C

2

DC1

D
C

2

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Higher probability
x

y

Lower probability

x

y

1 2 x

y
Diffusion pseudotime:

scale-free average over
random walks

3

DPT

Construction of Branching-point
identification

Cell-state
composition

Branch 2

Root

DPT

Diffusion pseudotime

Population index
Cell density

Gene
expression

Gene 
dynamics

Not observed

Activation
Deactivation

Branch 2Branch 1

0 1,000 2,000 3,000 4,000

–10

–8

–6

–4

–2

0

Ik
ar

os

0 1,000 2,000 3,000 4,000

–10

–8

–6

–4

–2

0

E
rg

DPT order DPT order

Branch 1

x

y

Correlated Anticorrelated

z

Branch 2 d(y,_)

Branch 1

Trunk
d(x,_)

Order d(x,_) vs d(y,_):

Kit

transition matrix

Sorted populations
4SG

4SFG–

HFNPPS

Ldb1
Runx1
Tbx3
Kdr
Cdh1
Sox17
Tbx20
Ets1
Etv2
HoxB4
Fli1
Tal1
Sox7
Hhex 10

5
0
–5
–10

Notch1
Egfl7
Lmo2
Lyl1
Pecam1
Cdh5
Cbfa2t3h
Ikaros
Sfpi1
Gfi1b
Gfi1
Myb
Gata1
Meis1
Nfe2
HbbbH1
Itga2b
Erg
Procr
Ets2
Etv6
FoxH1
FoxO4
HoxB2
HoxD8
Mecom
Mitf

Precursor
stage

Decision
stage

Terminal
branch 1

Terminal
branch 2

a

b

c

d

Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).
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developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 
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Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).
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developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 
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Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).
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developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 
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Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).
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developmental states is inversely proportional to their density. 
Since cell accumulation is a sign of slow progression, metastable 
cells can be recognized by pseudotimes with high densities.

We performed a DPT analysis of single-cell qPCR data focusing  
on early blood development in mice13. Early hematopoietic cells 
branch to become either red blood cells or endothelial-like cells. 
DPT ordered cells along their developmental trajectories and 
identified two branches (Fig. 1b) which corresponded to the 
reported blood (branch 1) and endothelial branches (branch 2)13. 
Plotting gene expression versus pseudotime, we found patterns 
across developmental stages that are known to be characteristic  
of blood progenitors (Fig. 1c,d), namely the hemangioblast-
like sequence14 (subsequent upregulation of Cdh1 to Tal1 and 
Cdh5) in the trunk13 and the endothelial differentiation route13 in 
branch 2 (elevated levels of Pecam1, Erg and Sox17, among others).  
In branch 1, we found sequential expression of Etv2, Tal1, Runx1 
and Gata115, a sequence of gene activations characteristic for 

erythroid development. DPT further allowed us to distinguish 
early transitions (characterized by Ikaros expression, for exam-
ple) from late transitions (e.g., Erg expression) (Fig. 1c) as well 
as a number of intermediate regulatory events13 until the onset 
of Hbb-bH1 expression (Fig. 1d). This information is crucial for 
the understanding of regulatory interactions; genes that undergo 
transitions (Supplementary Note 2) earlier than others are  
candidates for regulators of the differentiation process.

Metastable cells are identified by pseudotime regions of high 
density (Fig. 1d and Supplementary Fig. 1). We found four such 
states: precursor cells, hemangioblast-like cells at the decision 
state, erythroid-like and endothelial-like cells. Notably, both deci-
sion and precursor states consist of cell mixtures from two or three 
different stages, stressing the asynchrony of developmental stages 
that could not be resolved without pseudotemporal ordering.

To identify key decision genes, we quantified expression differ-
ences for DPT-inferred subgroups and experimentally sorted cells 
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Figure 1 | Diffusion pseudotime reveals temporal ordering and cellular decisions on the single cell level. (a) The diffusion transition matrix Txy is 
constructed by computing the overlap of local kernels at the expression levels of cells x and y (1). Diffusion pseudotime dpt(x,y) approximates the 
geodesic distance between x and y on the mapped manifold (2). Branching points are identified as points where anticorrelated distances from branch 
ends become correlated (3). (b) Application of DPT to single-cell qPCR of 42 genes in 3,934 single cells during early hematopoiesis13, sorted from 
primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP negative (4SG−) and four somite GFP positive (4SG+). DPT identifies the 
endothelial branch 1 (4SG−) and the erythroid branch 2 (4SG+) (blue cells in bottom graphs). (c) Dynamics of genes Erg and Ikaros in both branches. 
Black lines show the moving average over 50 adjacent cells. The red vertical line depicts the branching point. (d) Heatmap of gene expression (smoothed 
over 50 adjacent cells), with cells ordered by DPT and branching and genes ordered according to first major change (see Supplementary Note 2, 
section 2), which is indicated by black triangles (upward: activation, downward: deactivation). Pie charts (bottom) show the fraction of cells in the four 
metastable states (metastable state populations are high-density DPT regions indicated by the black horizontal line above the pie charts).
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Learning undirected Gaussian graphical models

Graphical Lasso Friedman, Hastie & Tibshirani, Biostatistics 9, 432 (2008)

cost(Σ−1) = − log det(Σ−1) + tr(SΣ)︸ ︷︷ ︸
−loglikelihood

+ λ||Σ−1||1︸ ︷︷ ︸
sparsity prior

The precision matrix Σ−1 receives an L1 prior.

. Limitations: Gaussian data. No causal interpretation.

• Learning the structure of undirected graphical models is easier than
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Figure 2 Network properties of the correlation network (CN) and Gaussian graphical model (GGM) inferred from a targeted
metabolomics population data set (1020 participants, 151 quantified metabolites). A+B: Graphical depiction of significantly positive edges
in both networks, emphasizing local clustering structures. Each circle color represents a single metabolite class. C+D: Histograms of

151
2

11325
⎛

⎝
⎜

⎞

⎠
⎟ = pairwise correlation coefficients (i.e. edge weights) for both networks. Green lines indicate the median values, red lines denote a

significance level of 0.01 with Bonferroni correction. The CN displays a general bias towards positive correlations throughout all metabolites. For
the GGM, the median value lies around zero and we observe a shift towards significantly positive values. E+F: Modularity between metabolite
classes measured as the relative out-degree from each class (rows) to all other classes (columns). The GGM (right) shows a clear separation of
metabolite classes, with some overlaps for the different phospholipid species diacyl-PCs, lyso-PCs, acyl-alkyl-PCs and sphingomyelins. Values
range from white (0.0 out-degree towards this class) to black (1.0). PCs = phosphatidylcholines.

Krumsiek et al. BMC Systems Biology 2011, 5:21
http://www.biomedcentral.com/1752-0509/5/21
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Causal Inference

There are two problems known as “causal inference”. Shalizi, Chap. 25 (2016)

• Given data about a system, find its causal structure.

• Given the causal structure of a system, estimate effects variables have
on each other.

We mostly talked about the first topic, because it’s “more related to
machine learning”.

Note: Very often, people estimate causal structure from subject knowledge.
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Estimate effects variables have on each other

Instrumental variables
You have no clue how to block all causal path-
ways, but you have some “external” way of
varying X. Then

β =
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ways, but you have some “external” way of
varying X. Then

β =
Cov(I, Y )

Cov(I,X)
.

U

X Y

I

. Randomization: I is coin toss that assigns treatment.

. Mendelian randomization, e.g. to investigate causal effect of Gene
Expression on Metabolite Level

β =
Cov(SNP,MetaboliteLevel)

Cov(SNP,GeneExpression)

Shin, Fauman, Petersen, Krumsiek & et al., Nature Genetics 46, 543 (2014)
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Summary

Directed graphical models can be used to “organize” causal reasoning.

. Inference using constraint or score based methods.

. Time series data helps identifying causal directions.

. Have the potential to improve on inference of biological networks?
Sachs, Perez, Pe’er, Lauffenburger & Nolan, Science 308, 523 (2005)

Maathuis, Colombo, Kalisch & Bühlmann, Nature Methods 7, 247 (2010)

Hill et al., Nature Methods 13, 310 (2016)

Thank you! Thanks to Fabian and all
members of ICB-ML!
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Transfer Entropy Schreiber (2000) and Granger Causality Granger (1969)

Consider a d-dimensional time series Xti.

• Transfer Entropy is conditional mutual information

TEi→j = MIX(t−1)i;Xtj |S

= HXtj |S −HXtj |X(t−1)i,S

where originally, S = X(t−1)j , and later S = {all observed variables}.
• Granger Causality is “almost the same”

GCi→j = log(ΣXtj |S)− log(ΣXtj |X(t−1)i,S),

we just measure uncertainty by covariance instead of entropy. In the
Gaussian case, GC is equivalent with TE. Barnett, Barrett & Seth, PRL 103, 238701 (2009)

. Estimators for MI (in the Gaussian case, partial correlation) are popular
for measuring conditional independence — their computation amounts
to evaluating a single test in the PC algorithm.
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Limitations of Transfer Entropy and Granger Causality

• Conditioning on all variables leads to a terrible curse of dimensionality.

• Say X1, X2 ∼ Ber(0.5) describe the expression of two independent
genes, and X3 = X1 +X2 their sum. Then X3 is a collider in the graph

X1 6⊥⊥ X2|X3. (compare “selection bias”)

. Granger Causality and Transfer Entropy yield an information flow
X(t−1)1 → Xt2. But it’s non-causal, i.e. not helpful for prediction!
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• General Note: Time Series data very helpful to resolve directions!
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College admission example Heckerman, Meek & Cooper (1997)

• PC algorithm chooses second most likely model! After it decides that
SEX and IQ are marginally independent, it never considers the
independence of SEX and IQ given PE.

• Most of the most likely model seems plausible in terms of a causal
interpretation. The direct influence of SES on IQ though is likely to be
due to a hidden common cause, e.g. IQ of parents.
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