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Motivation: two-site cluster DCA
Wolf, McCulloch, Parcollet & Schollwöck, PRB 90 115124 (2014a)

Model: Hole-doped Hubbard model on 2 dim square lattice, CTQMC by Ferrero, Cornaglia,

De Leo, Parcollet, Kotliar & Georges, PRB 80 064501 (2009)
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Fundamental problem of method: during Chebyshev recursion entanglement is
generated . accessible order or recursion limited (analogous to time evolution)
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Chebyshev expansion of spectral function
Weiße, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

Chebyshev Polynomials Tn(x) = cos (n arccos(x))

Recursive Tn+1(x) = 2xTn(x)− Tn−1(x)

T1(x) = x T0(x) = 1

Orthogonal
∫ 1

−1

dx√
1− x2

Tm(x)Tn(x) ∝ δmn

Global spectral function of H gives probability to find an eigenvalue at x

Aglob(x) =
1

dimHTr δ(x−H) = 1

dimH
∑
n

δ(x− Ei)

Local spectral function gives probability to find eigenvalues at x under the strong
constraint that eigenstates at x are close to a state |t0〉 (non-zero overlap 〈t0|En〉)

A(x) = 〈t0|δ(x−H)|t0〉 =
∑
n

|〈t0|En〉|2 δ(x− Ei)
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Expand δ(x−H) in Chebyshev polynomials
Weiße, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

Expansion coefficient

∫
dxTn(x)δ(x−H) = Tn(H)

Sum to infinity

δ(x−H) ∼ 1√
1− x2

∞∑
n=1

Tn(H)Tn(x)

Insert this in spectral function

A(x) = 〈t0|δ(x−H)|t0〉 ∼
1√

1− x2

∞∑
n=1

Tn(x)〈t0|Tn(H)|t0〉

Use recursive definition to compute |tn〉 = Tn(H)|t0〉

|tn〉 = 2H|tn−1〉 − |tn−2〉
|t1〉 = H|t0〉
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Comments on Chebyshev recursion with MPS
Weiße, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

|tn〉 = 2H|tn−1〉 − |tn−2〉
|t1〉 = H|t0〉

. starting from a weakly entangled state |t0〉, one evolves farer and farer away into a
highly-entangled sector Wolf, McCulloch, Parcollet & Schollwöck, PRB 90 115124 (2014a)

. need to adjust matrix dimensions . only finite expansion order n can be reached

Fundamental problem: All MPS methods suffer from entanglement growth!

. Time evolution e−iHt|t0〉: only short times

. Dynamic DMRG: only high values of broadening parameter (regulizer) η

. Lanczos recursion and Chebyshev recursion: only low expansion orders

Is there are a way to escape this?
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. need to adjust matrix dimensions . only finite expansion order n can be reached

Fundamental problem: All MPS methods suffer from entanglement growth!

. Time evolution e−iHt|t0〉: only short times

. Dynamic DMRG: only high values of broadening parameter (regulizer) η

. Lanczos recursion and Chebyshev recursion: only low expansion orders

Is there are a way to escape this?

5 / 17



Analyticity of Green functions

Spectral function is

A(x) = − lim
η→0

1

π
ImG(x+ iη)

where G(x+ iη) is analytic in upper half plane.

Green function also analytic in time domain

G(t) = lim
η→0

∫
dxG(x+ iη)e−ixt.

Complex analysis: If we know G(.) locally exactly, we can reconstruct it globally.

Recipe: Find function f(.) that locally agrees with G(.). Use this function to
reconstruct G(.) in the whole upper half plane.

Example: Knowledge of G(z) on the imaginary-frequency axis: fit Padé approximation
(continued fraction) to it and reconstruct limη→0G(x+ iη) on the real axis.
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Analytical continuation on the real-time axis

Laplace series is a suitable set of functions to fit G(t) on real axis.

f(t) =
∑
j

αje
(iωj−ηj)t

. Allow j to run over all eigen states . Fourier series: ωj ∼ Ej and ηj = 0

. Instead: target effective peak structure corresponding to excitations (aggolmeration
of poles / eigenvalues) . much less terms in

∑
j ... which are now damped . Laplace

series

. Analytical continuation: If there is a method to determine the parameters in f(t)
that make it equal to some local exact data of G(t), then we can use f(t) to
reconstruct G(t) for all times.
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Linear prediction

Non-linear fitting problem is hard to solve!

f(t) =

p∑
j=1

αje
(iωj−ηj)t, ηj > 0.

Note the following property of f(t), which emerges if we discretize time linearly

f(tn) =

p∑
j=1

ajf(tn−j), |aj | < 1.

Demand that numerical data G(tn) and f(tn) agree on domain [t0, t1] that is
accessible to the numerical method, i.e. minimize

∑
tn∈[t0,t1]

∣∣∣G(tn)−
p∑
j=1

ajG(tn−j)
∣∣∣2

. This linear fitting problem (determine parameters aj) can be easily solved!
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Example: simple low energy excitations
White & Affleck, PRB 77 134437 (2008) Barthel, Schollwöck & White, PRB 79 245101 (2009)

Low energy excitiations

. determine long-time behavior ∝ e(iω−η)t where η � 1

. determine sharp features in spectral function ∝ η
π

1
η2+(x−ω)2

For a general single-particle excitation of the ground state

. for short times, eigenstates from the whole single-particle bandwidth contribute!

. at long times, only a superposition of few ∝ e(iω−η)t survive

Linear prediction obviously applies for magnons in Heisenberg model!
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Linear prediction of Chebyshev expansion

Linear prediction in time . extrapolate coefficients G(tn) of Fourier expansion of A(x)

By analogy? / Ad hoc: Why not try linear predicition for coefficients µn of Chebyshev
expansion of A(x)? Ganahl, Thunström, Verstraete, Held & Evertz, PRB 79 045144 (2014)
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. In the setup they considered, Chebyshev expansion is equivalent to Fourier expansion!

General problem:

. (Complex) analyticity “hard” (impossible) to define for a discrete sequence µn

. Seeing linear prediction as analytical continuation not straight-forward to justify!
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Linear prediction of Chebyshev expansion

Another view point: Convergence theory for Chebyshev expansions.

. Roughly: Chebyshev expansion of f(x) convergences exponentially if f(x) smooth
and algebraically if f(x) discontinuous. Boyd, Chebyshev and Fourier spectral methods (2001)

. Exponential convergence is compatible with linear prediciton!

But: spectral function is in general at least discontinuous. Although in the
thermodynamic limit, the delta functions merge to a sectionwise smooth function

A>(x) =
∑
n

∣∣〈t>0 |En〉∣∣2 δ(x− Ei)
the weights

∣∣〈t>0 |En〉∣∣2 can produce discontinuities.

Efull
min-Emin

0 Efull
max-Emin

0

1

A
>

(
)

0 2 4
/v

0

1

A
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Chebyshev expansion of fermionic Green function

For a fermionic particle-like Green function, defined by choosing |t>0 〉 = c†|E0〉, the
discontinuity can be lifted by adding the hole parts |t<0 〉 = c|E0〉

A(x) = A>(x) +A<(−x)

. Chebyshev expansion of A(x) much better controlled than the one of A>(x) Holzner,

Weichselbaum, McCulloch, Schollwöck & von Delft, PRB 83 195115 (2011)

. accessible to linear predicition Ganahl, Thunström, Verstraete, Held & Evertz, PRB 90 045144 (2014)

Observe: Discontinuity produced by weights
∣∣〈t>0 |En〉∣∣2 if |t>0 〉 involves ground state

at x = 0 can also be lifted by defining

Ã>(x) = A>(x)−A>(0).
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Chebyshev expansion of fermionic Green function

A(x) = A>(x) +A>(−x) Ã>(x) = A>(x)−A>(0)

The Chebyshev expansions of both continuous redefinitions converge exponentially!
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. We can hence apply linear predicition to both of these redefinitions.

. Only problem: prior to linear predicition, the value of A>(0) is unknown. Luckily,
the corresponding self-consistency equation can be stably solved iteratively.
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Chebyshev expansion of fermionic Green function
What is the advantage of using Ã(x) over A(x)?

A(x) = A>(x) +A>(−x) Ã>(x) = A>(x)−A>(0)

. Different view on recursion over H: Probe spectrum of H in vicinity of |t0〉 by
subsequent applications of H

. MPS: each application of H to the test vectors |tn〉 produces entanglement

. Fundamental question: find the recursion (algorithm) that extracts most
information about spectrum of H per application of H?

. Jorge: Lanczos better than Chebyshev (among other results)
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Chebyshev expansion of fermionic Green function
What is the advantage of using Ã(x) over A(x)?

A(x) = A>(x) +A>(−x) Ã>(x) = A>(x)−A>(0)

. Among all possible setups of Chebyshev recursions, which one is optimal? . Wolf,

McCulloch, Parcollet & Schollwöck, PRB 90 115124 (2014a)

Here:

. A(ω) is only available in the least-optimal setup of Chebyshev recursions (which we
can now show is the one that is equivalent to time evolution)

. A>(ω) is available in the optimal setup (resolution increased by factor ∼ 6)!
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Orders of magnitude speed-up for MPS computations

. To reach the same error level, an expansion order of about ∼ 1
6

of the original setup
suffices.

. Due to the exponential time scale, this means a huge speedup. In the following
example, a factor 30.
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Outlook

Path 1: Combine several results on the computation of spectral functions to treat
multi-band problems in DMFT applications.

◦ Correct way of treating recursions with MPS: adaptive bond dimensions
Wolf, McCulloch, Parcollet & Schollwöck, PRB 90 115124 (2014a)

◦ Optimal Chebyshev recursion w.r.t. entanglement production
Wolf, McCulloch, Parcollet & Schollwöck, PRB 90 115124 (2014a)

◦ Linear prediction for Chebyshev expansions
Ganahl, Thunström, Verstraete, Held & Evertz, PRB 90 045144 (2014)

◦ Least entangled geometry for representation of impurity problems
Wolf, McCulloch & Schollwöck, arXiv:1410.3342 (2014b)

◦ Exploit optimal Chebyshev recursion for linear prediction
this work

Path 2: Use equialence of time evolution and Chebyshev expansion to use the
Chebyshev recursion as a new time evolution that only involves action of H (MPO
representation known) and not of e−iHt (no MPO representation known). this work
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Summary

◦ Chebyhsev recursion efficient way to compute spectral functions

◦ from precise knowledge of G(t) on a small domain [t0, t1] reconstruct G(t) for all
times

◦ linear prediction is, due to linearity, a practically feasble algorithm to extract
precise information about G(t) on [t0, t1]

◦ linear prediction can also be applied to Chebyshev expansions

◦ lift discontinuity of spectral functions to use optimal Chebyshev setup

◦ orders of magnitude speedup for MPS computations

independent of that

◦ Chebyshev expansion almost equivalent to Fourier expansion for a certain choice
of Chebyshev parameters

Thanks for your attention!
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