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Motivation

Collapse and revival of the matter wave field of a Bose-Einstein
condensate M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature 419 (2002)

scenario
initital state = BEC, approx. by a single-site coherent state: |α0〉 = e|α|

∑
n
αn

n!
|n〉

hamiltonian after quench: Ĥ(t ≥ 0) = 1
2
Un̂(n̂− 1)

⇒ periodic time evolution with frequency ω = U : |α(t)〉 = e|α|
∑
n e
−i 1

2
Un(n−1)t αn

n!
|n〉

〈
a†kak

〉
: matter wave interference pattern in the kx-ky-plane for different times t
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Motivation

Collapse and revival oscillations as a probe for measuring
multi-body interaction energies

multi-body interactions show
rescaling of two-body
interaction constant:
U ≡ U2 → U3, U4...

theoretical proposition:
P. R. Johnson et al., N. J. Phys. 11 (2009)

experimental realization:
S. Will et al., Nature 465 (2010) → Figure

A: "visibility"∝
〈
a
†
k=0

ak=0

〉
B: fourier analysis of interference pattern

C: time-scales and lattice depth of experimental realization for quench
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Outline

Matter of fact

Former investigations of collapse and revivals only for systems in the atomic limit or
via a solely meanfield approach.

Now: extensive study of the phenomenon to extract the influence of the hopping
amplitude using full many body states by application of

I exact techniques to estimate the predicitve power of
I a Gutzwiller mean-field approach for systems with a large Hilbert space

Outline

I Exact approaches to hard-core bosons in non-equilibrium
I Gutzwiller mean-field approach vs. exact results
I Results for experimentally relevant systems
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Exact solution for HCBs Why HCBs?

Exact approaches to hard-core bosons in non-equilibrium
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Exact solution for HCBs Why HCBs?

Why study hard-core bosons on a superlattice?

Bosons on an optical lattice are well described by the Bose-Hubbard model

ĤSCB = −J
∑
〈ij〉

(b̂†i b̂j + H. c.) +
U

2

∑
i

n̂i(n̂i − 1) + V
∑
i

r2i n̂i

What are hard-core bosons?

ĤHCB = −J
∑
〈ij〉

(
ĉ†i ĉj + H.c.

)
+ V

∑
i

r2i n̂i

where [ĉi, ĉ
†
j ] = δij , [ĉi, ĉj ] = 0 and ĉ†i ĉ

†
i = 0

So, why study hard-core bosons on a superlattice?

ĤHCB = −J
∑
〈ij〉

(
ĉ†i ĉj + H.c.

)
+A

∑
i

(−1)in̂i + V
∑
i

r2i n̂i

Because HCBs on a super-lattice show similar physical phenomena as
compared to SCBs but numerically exact solutions are available.
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Exact solution for HCBs General Properties

Hard-core bosons on a superlattice

Two bands similiar to Hubbard bands
I diagonalization of ĤHCB by means of a fourier transform yields

ε±(k) = ±
√

4J2 cos2(ka) +A2

I superlattice A opens gap for HCBs as interaction U does for SCBs

Consequences
I equilibrium: similar phase diagram to that of the Bose Hubbard model

I. Hen and M. Rigol, Phys. Rev. B 80 (2009)

I. Hen, M. Iskin, and M. Rigol, Phys. Rev. B 81 (2010)

I non-equilibrium: collapse and revival oscillations, A plays role of U
M. Rigol, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74 (2006)
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Exact solution for HCBs Solution techniques

Hard-core bosons in one dimension
Map on free fermions by Jordan-Wigner transformation

c†j = a†j

j−1∏
β=1

e
−iπa†

β
aβ

I calculation of properities of non-interacting particles through one-particle
representation of hamilton operator: Hilbert space dimension = L

I computational time scaling for one-particle green’s function: L5

I non-equilibrium properties for system sizes with L ∼ 500

I investigation of inhomogeneous (trapped) systems possible

Hard-core bosons in two dimensions
Exact Diagonlization

I system size L = 4× 4 = 16

I small but meaningfull for periodic systems
I not meaningfull for trapped case
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Exact solution for HCBs Results for homogeneous case

Results for hard-core bosons in one and two dimensions

observable

nk=0 =
1

L

∑
ij〈b̂
†
i b̂j〉

revival time

∆trev = tatom
rev − trev

tatom
rev = π/A, A ≡ 1

revival amplitude

∆nrev
k=0 = natom

k=0 rev − nrev
k=0

natom
k=0 rev = nk=0(t = 0)

J=0.0

0

4

8

12

16

n
k
=

0

J=0.3

J=0.6

���

0

1

2

3
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n
k
=

0

t A

���
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Exact solution for HCBs Results for the 1D trapped system

Results for hard-core bosons for a trapped system in 1D

ρ̃ = N [V/(dJ)]
d
2 compare

ĤHCB = −J
∑
〈ij〉

(
b̂†i b̂j + H.c.

)
+ V

∑
i

r2i n̂i

0

2

4

6

8

n
k
=

0

(a) J=0.0
J=0.3
J=0.6

0

2

4

6
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n
k
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0

t A

(c)
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n
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Gutzwiller mean-field approach Introduction: equilibrium

Gutzwiller mean-field approach vs. exact results
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Gutzwiller mean-field approach Introduction: equilibrium

Gutzwiller mean-field approach

Back to the Bose-Hubbard model

ĤSCB = −J
∑
〈ij〉

(b̂†i b̂j + H. c.) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂iV r
2
i

Gutzwiller type product state

|ΨMF〉 =

L∏
i=1

( nc∑
n=1

αin
(b†i )

n

n!

)
|0〉 =

L∏
i=1

( nc∑
n=1

αin|n〉i
)

Variational principle
δ 〈ΨMF|ĤSCB − µN̂ |ΨMF〉 = 0
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Gutzwiller mean-field approach Introduction: non-equilibrium

Gutzwiller mean-field approach for non-equilibrium

D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller, Phys. Rev. Lett. 89 (2002)

Time-dependent variational principle

δ 〈ΨMF|i∂t − ĤSCB + µN̂ |ΨMF〉 = 0

yields set of L× nc differential equations

iα̇in = −J
∑
〈j〉i

(√
n+ 1αi(n+1)Φ

∗
j +
√
nαi(n−1)Φj

)
+ αin n

[
U

2
(n− 1) + V r2i − µ

]
where Φj = 〈aj〉 =

∑nc
n=1

√
nα∗j(n−1)αjn

I numerically solved with forth-order Runge-Kutta method

F. Alexander Wolf (Augsburg U) Coll. and rev. oscill. as a probe... 27 July 2011 15 / 21



Gutzwiller mean-field approach Analytic solution for HCBs

Analytical solution for HCBs in the mean-field approach

due to mapping on spin-states

|ΨHCB
MF 〉 =

L∏
i=1

eiχi
(

sin
θi
2

+ cos
θi
2

eiφib†i

)
|0〉

and translational invariance (two-site problem)→ massive simplification:

θ̇1 = −2 d J sin θ2 sinφ

θ̇2 = 2 d J sin θ1 sinφ

φ̇ = 2A− 2 d J(sin θ2 cot θ1 − sin θ1 cot θ2) cosφ

where φ = φ1 − φ2

Observation of trajectories yields solution for revival time

trev =

∫ u2

u1

duf(u) with f(u) =
{
d2J2(1− u2)[1− (2γ − u)2]− (H0 − 2Au)2

}− 1
2

where γ = 2n− 1, H0 = −8n(1− n) d J − 2γA and u1/2 solutions of f(u) = 0
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Gutzwiller mean-field approach Analytic solution for HCBs

What can we learn from this analytical treatment?

for the revival time:
I dimension rescales J : J → dJ

I scaling: trev(J,A) ≡ trev(J/A)/A

I revival time a solely "energetic"
quantity

for the revival amplitude (damping)
I no damping:
nk=0 = n− 1

8dJ
(L−1)(H0+2A cos θ1)

I scaling: nk=0(J,A) ≡ nk=0(J/A)

 0

 0.5
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

∆t
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d=3
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I dimension rescales J : J → dJ
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for the revival amplitude (damping)
I no damping:
nk=0 = n− 1

8dJ
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I scaling: nk=0(J,A) ≡ nk=0(J/A)

deficencies
I meanfield completely fails to describe

revival damping
I artefact for dJ = 1: no oscillations

Sciolla and Biroli, Phys. Rev. Lett. 105 (2010)

need to check validity of the mean-field
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Gutzwiller mean-field approach Comparison between exact and mean-field results

Comparison between exact and mean-field results

error

ε(J) =
∆tex

rev(J)−∆tmf
rev(J)
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Error for trapped 1D systems:
∼ 5% ⇒ Error for 3D systems
smaller!
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Results for SCBs in a homogeneous potential

Results for experimentally relevant systems
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Results for SCBs in a homogeneous potential

Results for the Bose-Hubbard model - homogeneous potential
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Calculations for exemplary system parameters, in particular an interaction quench
of Uini = 6→ Ufin = 12 and different densities

System size
I homogeneous case: one-site problem
I trapped case: calculations for a system with L = 30× 30× 30 = 27000

cut-off for the max. occupancy of a lattice site: nc = 7
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Results for SCBs in a trapping potential

Results for the Bose-Hubbard model in a trap
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Results for SCBs in a trapping potential

Conclusion

by usage of the analogy: HCBs with super-lattice↔ SCBs with interaction
we could extract several reliable results via the application of exact and mean-field
approaches:

I very small error of the mean-field for the “right observable”, i.e. the revival time
I simple functional form of the relation: J/U ↔ trev

I furthermore: definite statements about features such as scaling w.r.t. to system
parameters, experimentally meaningful quench scenarios, artefacts of the
mean-field

proposed experiment:
for a given value of the interaction constant U , the determination of the hopping
constant via a measurement of the revival time is possible by comparison with
mean-field calculations

reference: Wolf, Hen, and Rigol, Phys. Rev. A 82, 043601 (2010)

Thank you for your attention!
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