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Cell Ranger for 68k PBMC cells
The optimized official 10X 
Genomics pipeline might give 
you a wait and crash your 
laptop. 

• Normalizing, filtering, 
selecting highly-variable 
genes: ~5 min vs. ~6 s for 3k 

• Normalizing again, PCA: ~2 
min vs. ~6 s for 3k 

• a first tSNE visualization: ~26 
min vs. ~27 s for 3k

of primary cells. To study immune populations within PBMCs,
we obtained fresh PBMCs from a healthy donor (Donor A).
8–9k cells were captured from each of 8 channels and pooled to
obtain B68k cells. Data from multiple sequencing runs
were merged using the Cell Ranger pipeline. At B20k reads
per cell, the median number of genes and UMI counts detected
per cell was B525 and 1,300, respectively (Fig. 3a and
Supplementary Fig. 5a). The UMI count is roughly 10% of
that from 293T and 3T3 samples at B20k reads per cell, likely
reflecting the differences in cells’ RNA content (B1 pg RNA
per cell in PBMCs versus B15 pg RNA per cell in 293T and
3T3 cells) (Supplementary Fig. 5a,b).

We performed clustering analysis to examine cellular hetero-
geneity among PBMCs. We applied PCA on the top
1,000 variable genes ranked by their normalized dispersion,
following a similar approach to Macosko et al.7 (Supplementary
Figs 3b and 5c and Supplementary Methods). K-means15

clustering on the first 50 PCs identified 10 distinct cell clusters,
which were visualized in two-dimensional projection of
t-distributed stochastic neighbour embedding (tSNE)16

(Supplementary Methods, Fig. 3b and Supplementary Fig. 5d).

To identify cluster-specific genes, we calculated the expression
difference of each gene between that cluster and average of
the rest of clusters. Examination of the top cluster-specific
genes revealed major subtypes of PBMCs at expected ratios17:
480% T cells (enrichment of CD3D, part of the T-cell receptor
complex, in clusters 1–3 and 6), B6% NK cells (enrichment of
NKG7 (ref. 18) in cluster 5), B6% B cells (enrichment of CD79A
(ref. 19) in cluster 7) and B7% myeloid cells (enrichment of
S100A8 and S100A9 (ref. 20) in cluster 9 (Supplementary
Methods, Fig. 3b–f, Supplementary Fig. 5e and Supplementary
Data 3). Finer substructures were detected within the T-cell
cluster; clusters 1, 4 and 6 are CD8þ cytotoxic T cells, whereas
clusters 2 and 3 are CD4þ T cells (Fig. 3e and Supplementary
Fig. 5f). The enrichment of NKG7 on cluster 1 cells implies a
cluster of activated cytotoxic T cells21 (Fig. 3f). Cells in cluster 3
showed high expression of CCR10 and TNFRSF18, markers
for memory T cells22 and regulatory T cells23 respectively, and
likely consisted of a mixture of memory and regulatory T cells
(Fig. 3c and Supplementary Fig. 5g). The presence of ID3,
which is important in maintaining a naive T-cell state24,
suggests that cluster 2 represents naive CD8 T cells, whereas
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Figure 3 | Distinct populations can be detected in fresh 68k PBMCs. (a) Distribution of number of genes (left) and UMI counts (right) detected per
68k PBMCs. (b) tSNE projection of 68k PBMCs, where each cell is grouped into one of the 10 clusters (distinguished by their colours). Cluster number is
indicated, with the percentage of cells in each cluster noted within parentheses. (c) Normalized expression (centred) of the top variable genes (rows) from
each of 10 clusters (columns) is shown in a heatmap. Numbers at the top indicate cluster number in (b), with connecting lines indicating the hierarchical
relationship between clusters. Representative markers from each cluster are shown on the right, and an inferred cluster assignment is shown on the left.
(d–i) tSNE projection of 68k PBMCs, with each cell coloured based on their normalized expression of CD3D, CD8A, NKG7, FCER1A, CD16 and S100A8. UMI
normalization was performed by first dividing UMI counts by the total UMI counts in each cell, followed by multiplication with the median of the total UMI
counts across cells. Then, we took the natural log of the UMI counts. Finally, each gene was normalized such that the mean signal for each gene is 0, and
standard deviation is 1. (j) tSNE projection of 68k PBMCs, with each cell coloured based on their correlation-based assignment to a purified subpopulation
of PBMCs. Subclusters within T cells are marked by dashed polygons. NK, natural killer cells; reg T, regulatory T cells.
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Seurat for 3k PBMC cells
Powerful analysis toolkit, but  not 
optimized for large data sets. 

• Normalizing, filtering, 
selecting highly-variable 
genes: ~30 s 

• Regressing out unwanted 
batch effects and other 
unwanted variation: ~2 min 

• Selecting PCs, Clustering, 
Visualization etc.

Satja Lab, NY Genome Center (2017) / Macosko et al., Cell (2015)



Scanpy for 68k PBMC cells
Scanpy’s modular structure and 
flavored functions allow to 
produce exactly the same results 
as with Cell Ranger. 

• Normalizing, filtering, selecting 
highly-variable genes: ~14 s 
vs. ~5 min for Cell Ranger 

• Normalizing again, PCA: ~17 s 
vs. ~2 min for Cell Ranger 

• a first tSNE visualization: ~5 
min vs. ~26 min for Cell Ranger

github.com/theislab/scanpy (2017)



Scanpy for 3k PBMC cells
Scanpy’s modular structure and 
flavored functions allow to 
produce exactly the same 
results as with Seurat. 

• Normalizing etc. ~3 s vs. 30 s 
for Seurat 

• Regressing out…: ~10 s vs. ~2 
min for Seurat 

• Selecting PCs, Clustering, 
Visualization etc.

github.com/theislab/scanpy (2017)



Scanpy for 3k PBMC cells
github.com/theislab/scanpy (2017)



Scanpy vs Cell Ranger
• Scanpy is about a factor 10 

faster in preprocessing and 
about a factor 3 - 5 in 
following steps. 

• It’s at least a factor 3 - often a 
factor 10 - more memory 
efficient. 

• Provides a high level of 
modularity, e.g., fully using 
sparsity gives further 
improvements.

github.com/theislab/scanpy (2017)



Beyond Diffusion Pseudotime
• hematopoiesis: 

differentiation from stem 
cells into 10 cell types 

• DPT recovers the final cell 
types fate groups, but 
transitions/trajectories 
remain unclear 

• Can be addressed by 
computing the most 
probable path and the 
fluctuations around it.

Collab. with Göttgens Lab, Cambridge / github.com/theislab/scanpy (2017)



More Machine Learning
• Python is the de facto standard for Deep Learning. It is 

chosen over the statistical programming language R as it’s 
a general purpose language, offering much more 
possibilities and control. 

• Scanpy already now allows integrating advanced Machine 
Learning tools. Most prominent example: scLVM Buettner et 
al., Nat. Biotechn. (2015) / bioRxiv (2017) 

• Deep Learning will likely become prominent also in 
molecular biology. Scanpy already now shares the core 
features of one of the winning pipelines (ranked 7th out of 
2000 internationally, ranked 1st across Germany) of the 
Data Science Bowl (2017). 

kaggle.com/c/data-science-bowl-2017 / github.com/theislab/scanpy (2017)

http://kaggle.com/c/data-science-bowl-2017
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Figure 1 | Overview of DeepFlow — deep learning data analysis for imaging flow cytometry.
Images from all channels of the Imaging Flow Cytometer are uniformly resized, and input directly into
the neural network, which is trained on the classification task. The learned features serve for both the
classification objective and the visualization task.

Introduction34

A major current challenge and opportunity in biology is interpreting the increasing amount of35

information-rich and high-throughput single-cell data. Here, we consider imaging data from flu-36

orescence microscopy (Pepperkok and Ellenberg, 2006), in particular from imaging flow cytometry37

(Basiji et al., 2007). Imaging flow cytometry (IFC) combines the fluorescence sensitivity and high-38

throughput capabilities of flow cytometry with single-cell imaging. Relevant fluorescent labels are39

chosen to assess certain phenotypes of interest. The large number of single cells analyzed per sam-40

ple — often hundreds of thousands — makes imaging flow cytometry unusually well-suited to deep41

learning, which demands very large training sets.42

Further, IFC generates high-dimensional information for each cell, including spatially-mapped43

intensity information for thousands of pixels for each of several channels: brightfield and darkfield44

(which require no staining procedure) and, optionally, several fluorescence channels. This means45

a dramatic increase in information content as compared to the measurement of a single spatially46

integrated fluorescence intensity value for each channel, as in conventional flow cytometry (Brown47

and Wittwer, 2000). Finally, IFC provides one image for each single cell, and hence does not require48

whole-image segmentation.49

It is often not known in advance which morphological features are useful to distinguish specific,50

often rare, phenotypes in IFC. Classical computer vision algorithms are unlikely to extract sufficient51

metrics to capture all relevant morphological features. Deep learning, by contrast, potentially cap-52

tures many more subtleties of image data. Here, we present the deep learning based data analysis53

workflow DeepFlow — deep learning for imaging flow cytometry. It consists of a deep convolu-54

tional neural network combined with a standard softmax classifier and a visualization tool based on55

non-linear dimension reduction (Fig. 1).56

DeepFlow enables improved data analysis capabilities for IFC as compared to prior traditional57

machine learning methods (Eliceiri et al., 2012; Blasi et al., 2016; Jones et al., 2009; Dao et al., 2016).58

This is mainly due to three general advantages of deep learning over traditional machine learning:59

there is no need for cumbersome preprocessing and manual feature definition, classification accuracy60

is improved and learned features can be visualized to uncover their biological meaning. Other61

recent work on deep learning in high-throughput microscopy either relied on engineered features62

(Chen et al., 2016a), focused on segmentation and classification of whole images without addressing63

visualization of network features (Kraus et al., 2016). Reference (Pärnamaa and Parts, 2016) is64

most closely related to the present work, but neither presents an optimized solution to Imaging65

Flow Cytometry data, nor addresses the particular challenges of a continuous biological process, like66

cell cycle.67
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Figure 2 | Representative images for the cell cycle stages as measured in brightfield, darkfield
and fluorescence channels. Seven cell cycle stages define seven classes. We only show one representative
image for the interphase classes G1, S, and G2, which can hardly be distinguished by eye.

Materials and Methods68

We used a data set of 32,266 asynchronously growing immortalized human T lymphocyte cells69

(Jurkat cells), which had previously been analyzed using traditional machine learning (Blasi et al.,70

2016; Hennig et al., 2016). Images of these cells can be classified into seven different stages of cell71

cycle (Figure 2), including phases of interphase (G1, S and G2) and phases of mitosis (Prophase,72

Anaphase, Metaphase and Telophase). In this data set, ground truth is based on the inclusion of73

two fluorescent stains: propodium iodine (PI) to quantify each cell’s DNA content and the mitotic74

protein monoclonal #2 (MPM2) antibody to identify cells in mitotic phases. These stains allow75

each cell to be labeled through a combination of algorithmic segmentation, morphology analysis of76

the fluorescence channels, and user inspection (Blasi et al., 2016). Note that 97.78% of samples in77

the dataset belong to one of the interphase classes G1, S and G2. The strong class imbalance in78

the dataset is related to the fact that interphase lasts — when considering the actual length of the79

biological process — a much longer period of time than mitosis.80

Recent advances in deep learning have shown that deep neural networks are able to learn powerful81

feature representations (Krizhevsky et al., 2012; Vincent et al., 2010; Szegedy et al., 2015; LeCun82

et al., 2015). For DeepFlow, we adapt the widely used “Inception” architecture (Szegedy et al.,83

2015), and optimize it for treating the relatively small input dimensions that occur in IFC data.84

The architecture consists in 13 three-layer “dual-path” modules (Suppl. Fig. 7), which process and85

aggregate visual information at an increasing scale. These 39 layers are followed by a standard86

convolution layer, a fully connected layer and the softmax classifier. Training this 42-layer deep87

network does not present any computational difficulty, as the first three layers consist in “reduction88

dual-path” modules (Suppl. Fig. 7), which strongly reduce the original input dimensions prior to89

convolutions in the following “normal dual-path modules”. The number of kernels used in each layer90

increases towards the end, until 336 feature maps with size 8 ⇥ 8 are obtained. A final average pooling91

operation melts the local resolution of these maps and generates the last 336-dimensional layer, which92

serves as an input for both classification and visualization. The neural network operates directly on93

the uniformly resized images from an arbitrary number of channels of the Imaging Flow Cytometer.94

It is trained with cell images that have been labeled as described above, using stochastic gradient95
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Fig 4. tSNE-Visualization of the test set in terms of the last layer
representation. a, The representation arranges data along a cylinder, ordering the
different cell phases in correct chronological order (Green: G1, Orange: S, Cyan: G2,
Red: Prophase, Blue: Metaphase, Anaphase and Telophase not distinguished further
due to small number of representatives). The strong class imbalance between interphase
classes (G1: green, S: orange, G2: cyan) and mitotic phases (prophase: red, metaphase:
blue) can be seen. b, tSNE representation of the Interphases in activation space. The
color map now reflects the DNA content of cells, which increases from blue to red. c,
Randomly picked representatives of Cluster A. The cells have high circularity and well
defined borders. d, Randomly picked representatives of Cluster B.
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Eulenberg, Köhler et al. bioRxiv doi:10.1101/081364  (2016)

• cell cycle 
classification 

  
• detection of 

abnormal cells
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